Software Testing
and
Evaluation

Richard A. DeMillo
W. Michael McCracken
R.J. Martin

John F. Passafiume 7

Software Testing
and
Evaluation

Richard A. DeMillo

W. Michael McCracken
- R:J. Martin

John F. Passafiume

Sowwasengineering Research Center
Georgia Institute of Technology

.

THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC. .:2 5
Menlo Park, California - Reading, Massachusetts *

Don Mills, Ontario - Wokingham, U.K. - Amsterdam - Sydney A
Singapore « Tokyo * Madrid - Bogota « Santiago « San Juan “m*

2 - 8¢

o

Sponsoring Editor: Alan Apt
Production Supervisor: Karen K. Guliver
Cover Designer: Michael Rogondino

Copyright © 1987 by The Beajamin/Cumpmings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system. or transmitted, in any form or by any mcans. clectronic, mechanical.
photocopying. recording or otherwise without the prior written permission of the
publisher. Printed in the United_Sta%e< of America Published simultaneously m Canada.

Library of Congress Cataloging-in-Publicatfon Data

Software testing and evaluation

Includes index.

1. Computer software — Testing. 2. Computer
software — Evaluation. 1. DeMillo, Richard A.
QA76.76.T48564 1987 005.1'4 86-7944
ISBN 0-8053-2535-2

ABCDEFGHIJ-MA-89876 -

The Benjamin/Cummings Publishing Company. Inc.
2727 Sand Hiil Road
Menlo Park, Californmia 94025

P;efaceJ ‘

This book is an updated and edited version,of the report of the Software
Test and Evaluation Project to the Office of the Secretary of Defense
(Research and Engineering). This report received wide circulation as a
Technical Report issued by the Geotfgia Institute of Technology. While'
planning for a major revision and eventual. pubhcatxon of the report in
book form, we continuéd to receive ‘many requests fot ooplcs of the ori-
ginal document.. Bill Riddle -- then Chairman” of thé "ACM Special
Interest Group in Software Engmeermg -- ‘and “Aldn Apt, of Benjamin
Cummings were instrumental in persuadmg us that rapld pubheanon ofa
slightly revised version:would be a serv:ce to the Cbmmumty The
present volame is the result. :

The Software Test and Evaluation Pro;ect (STBP) was initiated in
1981 by the Director Defense Test and Evaluation.t The primary objec-
tive of STEP was (and remains) the development of i nnp oved policy and
guidance for use by the U.S. Department of Defense for the test and -
evaluation of computer software for so-called mxsswn-crmml" applica-
tions, Our group at Georgia Tech was selected to develop and execute a
plan for carrying out these improvements. As the project unfolded over
the next three years, it became increasingly clear that the results had
broad applicability in two directions. First, we were being called upon to
develop a methodology for "technology transition” -- the rapid identifica-
tion, demonstration and introduction to pracnqal use of cutting-edge tech-
nologies in environments where they were critically needed. In the area
of computer software (for commercial as well as mission-critical applica-
tions) ‘it seemed to us that a structured approach to transitioning new
technology into practical use might be useful in a variety of applications

1 In 1984, special legislation of the U.S. Congress resulted in a reorganization
ofmtand’evkluauonofﬁmwxﬂnnthcnepammntofweme Specifically, a
Director of Operational Test and Evaluation was appointed to parallel the
Development and Engineering Test and Evaluation carried out by the Office of
the Underseeretary of Defense for Research and Engineering (Defense Test
and Evaluation), In 1986, the principal office charged -with these
 responsibilities was redwgmted Deputy Undersecretary of Defense (Test and
Evaluation). It is this latter office that oversees and directs STEP at the
present.time.

vi Preface

and settings.

Second, the approach which we settled upon -- the development of
State-of-the-Art and State-of-Practice overviews -- turned out to be rich
with generic technology and technology assessments. These overviews
contained brief descriptions of major test methodologies, catalogs of
automated tools to support them, essentially exhaustive bibliographies,
case studies of good and bad examples of software testing and exegeses
of major standards. With the exception of those materials that specifi-
cally addressed Military standards and regulations (reflecting the status
of these documents in 1983), such overviews can be read and applied to
any large-scale software engineering effort in which the test and evalua-
tion of software effectiveness and suitability are major activities.

The context of these results is important. At the time that STEP was
initiated, the role of software in escalating the cost and driving down the
reliability of systems had become very visible. Virtually, every major
Defense system planned or fielded over the previous decade contained at
least one subsystem consisting of an embedded computer controlling
some mission-critical function. Although hardware and software contri-
buted in equal measure to the successful implementation of system func-
tions, relative imbalances in their treatment during system development
had long been observed. In 1974, for example, a Task Force of the
Defense Science Board noted: "whereas the hardware development was
monitored, tested and regularly evaluated, the software development was
not." These findings were repeated in 1979. In 1980 and 1981, the U.S.
Secretary of Defense (in his reports to Congress and ‘the Military Ser-
vices) directed the Armed Forces to "...give priority to development of
tools and techniques for testing of embedded computers and software.”
He further “directed that "Testing of software should be sufficient to
achieve a balanced risk with the hardware of the same system."

The approach upon which we settled involved constructing two
"snapshots”. The first of these comprised a view of the sort of testing
that could be supported by the state-of-the-art. This was essentially our
view of what a technologically ideal world of software testing was capa-
ble of supporting. The second snapshot was a picture of current prac-
tices. There are methodological difficulties in constructing an overview
of practices in a setting as vast as the U.S. Defense industry. Not the
least among these are the many programs and organizations to be sam-
pled and the lack of long-term institutional memory. However, by care-
fully selecting representative programs, organizations, and applications
and by religiously adhering to strict data-gathering protocols an assess-
ment of current practices emerged that we believe represents a composite
view of how mission-critical software is actually tested. The technology
shortfall -- the difference between what the ideal world would support
and what was actually available to engineers -- was the gap to be closed.

‘Pr'efa'ce' vii

Institutional forces within the Department of Defense and the Defense-
related industries have responded encouragingly. -

There are several keys to the success of this approach. We were at
the outset in full agreement with the project sponsors that this was rict to
be a study in which sufficient "data" were gathered to support a previ-
ously identified conclusion. We were given sufficient resources and
access to sufficiently many organizations to derive an objectively support-
able assessment of what the true needs were. We were also encouraged
to provide "top-down" recommendations to effect improvements. That
is, for those instances in which the system development process needed
to be modified, we were not discouraged from recommending such,
modifications. ' R

The need for these improvements has scarcely diminished in the inter-
vening five years. Software has assumed critical (often life-critical) roles
in non-military applications ranging from telecommunications to civilian
air traffic control. In the Defense sector, command and control, ballistic
missile defense, and avionics are but three of the many mission areas in
which software is the dominant source of system functionality (and,
therefore, risk). The planned and disciplined engineering of software
destined for these sorts of applications is, of course, essential. Part of
any such engineering process is a technologically sound approach to test-
ing.

Such an approach will incorporate:

® A chain of test plans and procedures that begins at the topmost lev-
els of system development and proceeds through the most detailed
levels. '

® The use of varied software testing technologies employing
automated tools and techniques that arg appropriate to the criticality
of the application.

® A system of reporting test results and deficiencies that supports
objective evaluations of software system status.

® An effective decision-making apparatus, capable of incorporating
evaluations of software status into overall assessments of risk asso-
ciated with the development and eventual fielding of the system.

We intend this volume to be a sourcebook out of which such an approach
can be constructed.

Many people have contributed to STEP since its inception. Charles
Watt was Deputy Director Defense Test and Evaluation throughout most
of the project and provided technical direction and leadership. Donald
Greenlee (Deputy Director Operational Test and Evaluation, at this

viii Preface

wntmg) prov1ded day-to-day oversight and guidance: In addition to their

project management roles, both of them contributed: technieally in sub-

stantjal ways. Edith Martin helped structure the technology transition

. methodology in its early stages. Control Data Corporation provided early

- technical support services, and the National Security Industrial Associa-
tion (NSIA) provided technical forums for disseminating STEP resuits.
Researchers at Georgia Tech whe contributed to the effort include Sinasi
Bilsel, Michael Merritt, and E. Pipat. Fred Sayward contributed sub-
stantlally to the preparation of the STEP 'reports. Rena Faye Smith aided
in the data gathering ¢ffort and helped compile much of the material in
the overview of current practices. Jackson Dodsworth and Esther
Richards entered most of the original manuscript. We gratefully ack-
nowledge the contributions of all of these individuals.

This manuscript was typeset on an Imagen Lasér Printer in the School
of Information and Computer Science at Georgia Tech using Unixt docu-
ment preparation tools. Figures and illustrations were developed on a
Hewlett-Packard 9845C Graphics system in the Software Engineering
Research Center. Ann Richliew and Glenn Barry provided invaluable
assistance, for which we are grateful.

Richard A. DeMillo
W. Michael McCracken
R. J. Martin

John F. Passafiume

Georgia Institute of Technclogy

August 1986

+ Unix is trademark of AT&T Bell Laboratories.

Contents

Preface

Part I, State-of-the-Art Overview

Chapter 1
Definitions and Theory of Testing

1.1 Program Specifications and Correctness

1.2 Reliability and Validity

1.3 Deductive Approaches -- Proofs of Correctness
1.4 Mathematical Terminology

1.5 Statistical Reliability Models

Chapter 2
Software Testing

2.1 Testing Strategies
2.2 Testing Techniques
2.2.1 Static Analysis Techniques

Symbolic Testing '
Program Instrumentation °
Program Mutation Testing
Input Space Partitioning
Functional Program Testing
Algebraic Program Testing
Random Testing
Grammar-Based Testing

O Data-Flow Guided Testing

.11 Compiler Testing

2 12 Real-Time Software and Testing

OW\IOM#&N

23
2.4 Comparative Evaluation of Testing Techniques

ther Strategies for Constructing Reliable Software

w

SN0 OVW

e

.x Contents

Chapter 3

Testing and Evaluation Tools 78

3.1 Introduction 78
3.1.1 General Views of Testing Tools 78
3.1.2 Classification 80

3.2 Static Analysis Tools 81
3.2.1 Static Analysis Tool Classification 81
3.2.2 Static Analyzers 83
Catalog Listing of Static Analyzer Tools 88

3.3 Dynamic Analysis Tools 96
3.3.1 Dynamic Tool Classification . 96
3.3.2 Symbolic Evaluators 97
Catalog Listing of Symbolic Evaluators 103
3.3.3 Test Data Generators 107
Catalog Listing of Test Data Generators 114
3.3.4 Program Instrumenters 118
Catalog Listing of Program Instrumenters 125,
3.3.5 Mutation Testing Tools 134"
Catalog Listing of Mutation Testing Tools 140

3.4 Test Supporting Tools 143
3.4.1 Automatic Test Drivers. - 143
Catalog Listing of Automatic Test Drivers 146
3.4.2 Comparators 148
Catalog Listing of Comparators 149

Part I, Current Defense Practices Overview

Chapter 4

Overview and Data Gathering Procedure 152

Chapter §

Current Defense Practices 154
An overview of organizations and the technology they use

5.1 Military Headquarters and Development Commands 154

A review of how the Military Services implement the require-
ments of test and evaluation of software and how that process

can be improved

5.2

5.3

5.4

5.5

Contents xi

Program and Project Management Commands 159
A case study of seven projects to determine how the military
organizations responsible for the development of the system,
planned, managed, and conducted the test and evaluation of
software on those projects

5.2.1 Overview of Projects and Development Process 159
5.2.2 Analysis Techniques 169
5.2.3 Testing and Measurement ’ v 17
5.2.4 Risk Reduction Activities 177
5.2.5 General Comments -- Lessons Learned 182
Independent Test Organizations 184

A review of the Military Service's operational test agencies’
involvement in the test and evaluation of software of weapon sys-
tems :
Development Organizations: Private Contractors, Vendors, and
Other Software Suppliers 194

The state of the practice of software development as imple-
mented by twelve contractors

5.4.1 Applications and End-User Software 195
5.4.1.1 Overview of Development Process 195
5.4.1.2 Analysis Techniques 200
5.4.1.3 Testing and Measurement 203
5.4.1.4 Risk Reduction Activities 208
5.4.1.5 New Technology Trends and Lessons

Learned 211

5.4.2 Support and System Software 220
5.4.2.1 Overview of Development Process 220
5.4.2.2 Analysis Techniques 222
5.4.2.3 Testing and Measurement ' 223
5.4.2.4 Risk Reduction Activitiés - " 225
5.4.2.5 New Technology Trends and Lessons

Learned 226

Independent Verification and Validation Organizations 232

IV&V contractors discuss how they are conducting IV&YV on four
projects

5.5.1 Overview of Development Process 232.
5.5.2 Analysis Techniques 234
5.5.3 Testing and Measurement 236
5.5.4 Risk Reduction Activities 238

5.5.5 New Technology Trends and Lessons Learned 239

xii Contents

Chapter 6
Policy and Standards

Case Studies from the Department of Defense

Overview
6.1 Department of Defense Policy
6.1.1 Major Systems Acquisitions (DoD Directive S000. 1
and DoD Instruction 5000.2) _
6.1.2 Test and Evaluation (DoD Directive 5000.3))
6.1.3 Management of Computer Resources in Major Defense
Systems (DoD Directive 5000.29)
6.1.4 Major Automated Information Systems Approval
Process (DoD Instruction 7920. 2)
6 2 Standards used in Contracts A
6.2.1 Military Standards
6.2.2 Data Items
6.2.3 Nuclear Safety Considerations
6.2.4 The Software Development Standards (SDS)
Package
6.3 Regulations and Standards of the Armed Forces
6.3.1 Air Force Regulations
6.3.2 Army Regulations
6.3.3 Navy Regulations and Standards
6.4 Additional Useful Resources
.6.4.1 DoD Acquisition Program
6.4.2 Strategy for a DOD Software Initiative
6.4.3 Embedded Computer Resources and the DSARC |
Process
6.4.4 Proceedings of the Joint Logistics Commanders Policy
Coordinating Group on Computer Resource
Management
6.4.5 Report of the Army Science Board ad hoc Subgroup
on Testing of Electronic Systems
6.4.6 Air Force Electronics Systems Division Guidebooks
for Software Management
6.4.7 Air Porce Space Division Management Guide for
Independent Verification and Validation
6.4.8 Air Force Space Division Guide to Management
of Embedded Computer Resources

Appendix A, Information Sources for Testing Tools

245

245
245

245
249

252

253
254
254
262
264
265
272
272
280
294
302
302
307

311

316
323
327
348
350

352

Contents xiii

Appendix B, The Testing Tools Index 354
B.1 Alphabetical Listing of Cataloged Tools 354
B.2 Testing Tool Data Sheets . 357
Appendix C, Data Gathering Guides , 421
Appendix D, Comprehensive Bibliography 458

This appendix contains a comprehensive listing of books, survey
articles and detailed articles compiled from the open literature

Theory of Testing 459
Software Testing 467
Testing Strategies 467
Testing Techniques 476
Static Analysis Techniques 476
Symbolic Testing 478
Program Instrumentation 480
Program Mutation Testing 483
Input Space Partitioning 485
Functional Program Testing 487
Algebraic Program Testing 488
Random Testing 489
Grammar Based Testing 490
Data-Flow Guided Testing 491
Compiler Testing 492
Real-Time Software and Testmg 494
Other Strategies for Constructing Reliable Software 499
Comparative Evaluation of Testing Techniques 506
Testing and Evaluation Tools 507
General 507
Static Analysis Tools ' 510
Dynamic Analysis Tools 515
Test Supporting Tools - 526

Appendix E, Bibliography of DoD Standards, Regulations
and Guidance ,) 531

Part 1

State-of-the-Art Overview

Chapter 1

Definitions and Theory of Testing

1.1 Program Specification and Correctness

When asked to give a reason for testing a computer program, typical
programmers respond, "To see if it works.” In practice, the notion of a
"working" program is a complex one which takes into account not only
the technical requirements of the programming task but also economics,
maintainability, ease of interface to other systems and many other less
easily quantifiable program characteristics. As these characteristics
become more complex, testing to see if a particular piece of software has
those characteristics becomes more difficult. The technical literature on
program testing tends to deal with "working” in one simplified disguise:
correctness.

For most of this6verview, we will consider the following (simplified)
model of the program development cycle (see Figure 1.1).

At the start of the programming task, the programmer is supplied
with a specification of the program. The specification may be as formal
as a document which details the intended behavior of the program in all
possible circumstances or it may be as informal as a few instances’ of
what the program is intended to do. In practice, the programmer has
available to him several sources of information which comprise the
specification. These may include a formal specification document, a’
working prototype, instances of program behavior, and a priori
knowledge about similar software. All of these sources contribute to the
programmer’s understanding of the task.

Working from this specification, the programmer develops the
software. The test -- or, more generally, validation -- of the software
lies in the comparison of the software product with the specification of
intended behavior.

4 Definitions and Theory of Testing

-

PROGRAM
D MASHINE —
AN
v COMPARK
e OUTPUT
TRST DATA
¥ | our
B | y| vy

SPRCIFICATION ~ KNOWN INPUT/OUTPUT

Figure 1.1, Testing for Correctness

For most of this overview, we will not be concerned with the exact
nature of specifications. The examples we give will be small and under-
standable. For instance, the specification of a sorting program might be
the following:

INPUT: up to 10,000 input records in the format (KEY1, KEY2,
VALUE). :

1.1 Program Specification and Correctness 5

OUTPUT: a reordering of the input records with the following
properties:

(1) the primary (KEY1) keys should appear in ascending
order,

(2) if two records R1 and R2 have equal primary keys and
if R1 precedes R2 in the input sequence, then R1
precedes R2 in the output.

Additional information could have been added to this specification. It
could be required, for example, that the sorting program satisfy some
performance criteria or that some standard interface conventions be fol-
lowed.

Practical situations hardly ever give rise to such "clean" specifications.
Much research has been devoted to the problem of specifying large and
complex software systems [see references 1,3,6,8,12,15]). For our dis-
cussion of software testing research, we will not need to be more precise
about the nature of program specification.

A specification provides a description of the input data for the pro-
gram. This input data is called the domain of the program and is usually
represented by D. The specification also provides a description of the
intended behavior of the program on D. We will represent the intended
behavior on input data d by f(d). In practice, f(d) may be quite com-
plex. ‘ '

Similarly, a program P represents some computational actions which
will take place when the program is supplied with input data. Even
though these actions may be quite complex, we will simplify things con-
siderably by representing the behavior of program P by P*. Thus, P*(d)
is a mathematical idealization of the behavior of program P on data item
d.

The shorthand notation f(D) and P*(D) is used to represent the
intended behavior on all input data and the behavior of P on all input
data, respectively.

The program P is said to be correct with respect to a specification f if
A(D) = P*(D), that is, if P’s behavior matches the intended behavior on
all input data.

A problem arises in practical applications of the mathematical theory.
How is it possible to determine whether or not f(d) = P*(d) for some
particular datum 4 in the domain? If the specification document is com-.
pletely formal, then it should also answer this question. However,
specification documents are hardly ever completely formalized (even
when they are, determining f(d) may be infeasible). When the specifica-
tion is not formalized, f(d) may be obtained by hand calculation, text-
book requirements or by the application of estimates obtained from

