Compilers

- _Principlés, Techniques, and Tools

_ ALFRED V. AHO

-«
'RAVI SETHI

JEFFREY D. ULLMAN

Compilers

Principles, Techniques, and Tools

ALFRED V. AHO

ATE&T Beil Laboratories
Mursay Hill, New Jersey

RAVI SETHI

AT&T Bell Laboratories
Murray Hill, New Jersey

JEFFREY D. ULLMAN

Stanford University
Stanford, California

A
\A4

ADDISOMN-WESLEY PUBLISHING COMPANY

Reading, Massachusetts « Menio Park, California

Don Mills, Ontario « Wokingham, England e Amsterdam e Sydney
Singapore e Tokyo ¢ Mexico City » Bogotd e Santiago e San Juan

Mark S. Dalton/Publisher
James T. DeWolf/Sponsoring Editor

Bette J. Aaronson/Production Supervisor
Hugh Crawford/Manufacturing Supervisor
Karen Guardino/Managing Editor

This book is in the Addison-Wesley series in Computer Science
Michacl A. Harrison/Consulting Editor

H

Library of Congress Cataloging in Publication Data

Aho, Alfred V.
Compilers, principles, techniques, and tools.

Bibliography: p.

Includes index.

1. Compiling (Electronic caomputers) I. Sethi,
Ravi. II. Ullman, Jeffrey D., 19842- . III. Title.
QA76.76.:C65A37 1985 005.4’53 85-15647
ISBN 0-201-10088-8 ’

Reproduced by Addison-Wesley from cameréigeady copy supplied by the authors.
Copyright © 1986 by Bell Telephone Laboratories, Incorporated.

. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. Printed in the United States of America. Published simultaneously in Canada.

UNIX is a trademark of AT&T Bell Laboratories. DEC, PDP, and VAX are trade-

marks of Digital Equipment Corporation. Ada is a trademark of the Ada Joint Pro-
gram Office, Department of Defense, United States Government.

ABCDEFGHIJK-HA-898765

Preface

This book is a descendant of Principles of Compiler Design by Alfred V. Aho
and Jeffrey D. Ullman. Like its ancestor, it is intended as a text for a first
course in compiler design. The emphasis is on solving problems universally
encountered in designing a language translator, regardless of the source or tar-
get machine.

Although few people are likely to build or even maintain a compiler for a
major programming language, the reader can profitably apply the ideas and
techniques discussed in this book to general software design. For example,
the string matching techniques for building lexical analyzers have also been
used in text editors, information retrieval systems, and pattern recognition
programs. Context-free grammars and syntax-directed definitions have been
used to build many little languages such as the typesetting and figure drawing
systems that produced this book. The techniques of code optimization have
been used in program verifiers and in programs that produce ‘‘structured”
programs from unstructured ones.

Use of the Book

The major topics in compiler design are covered in depth. The first chapter
introduces the basic structure of a compiler and is essential to the rest of the
book.

Chapter 2 presents a translator from infix to postfix expressions, built using
some of the basic techniques described in this book. Many of the remaining
chapters amplify the material in Chapter 2.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines,
and scanner-generator tools. The material in this chapter is broadly applicable
to text-processing.

Chapter 4 covers the major parsing techniques in depth, ranging from the
recursive-descent methods that are suitable for hand implementation to the
computationally more intensive LR techniques that have been used in parser
generators.

Chapter 5 introduces the principal ideas in syntax-directed translation. This
chapter is used in the remainder of the book for both specifying and imple-
menting translations.

Chapter 6 presents the main ideas for performing static semantic checking.
Type checking and unification are discussed in detail.

iv PREFACE

Chapter 7 discusses storage organizations used to support the run-time
environment of a program.

Chapter 8 begins with a discussion of intermediate languages and then
shows how common programming language constructs can be translated into
intermediate code.

Chapter 9 covers target code generation. Included are the basic “on-the-
fly”’ code generation methods, as well as optimal methods for generating code
for expressions. Peephole optimization and code-generator generators are also
covered.

Chapter 10 is a comprehensive treatment of code optimization. Data-flow
analysis methods are covered in detail, as well as the principal methods for
global optimization.

Chapter 11 discusses some pragmatic issues that arise in.implementing a.
compiler. Software engineering and testing are particularly important in com-
piler construction.

Chapter 12 presents case studies of compilers that have been constructed
using some of the techniques presented in this book.

Appendix A describes a simple language, a “‘subset’ of Pascal, that can be
used as the basis of an implementation project.

The authors have taught both introductory and advanced courses, at the
undergraduate and graduate levels, from the material in this book at AT&T
Bell Laboratories, Columbia, Princeton, and Stanford.

Chapters 1 and 2 along with the early sections of Chapters 3-9 could form
the backbone of an introductory course. Chapter 2 shows the implementation
of a simple compiler front end and introduces concepts from Chapters 3-8.
This organization allows some flexibility in the selection and order of presen-
tation of material from the remaining chapters. Advanced courses might
stress type checking in Chapter 6, run-time storage organization in Chapter 7,
pattern-directed code generation in Chapter 9, and code optimization in
Chapter 10.

Exercises

As before, we rate exercises with stars. Exercises without stars test under-
standing of definitions, singly-starred exercises are intended for more
advanced courses, and doubly-starred exercises are food for thought.

Acknowiedgments

At various stages in the writing of this book, a number of people have given
us invaluable comments on the manuscript. In this regard we owe a debt of
gratitude to Bill Appelbe, Jon Bentley, Rodney Farrow, Stu Feldman, Charles
Fischer, Chris Fraser, Dave Hanson, Robert Henry, Gerard Holzmann, Steve
Johnson, Brian Kernighan, Ken Kubota, Dave MacQueen, Dianne Maki,
Doug Mcllroy, Charles McLaughlin, John Mitchell, Elliott Organick, Rob
Pike, Kari-Jouko Raiha, Dennis Ritchie, Bjarne Stroustrup, Tom Szymanski,

e RFACE

Peter Weinberger, and Reinhard Wilhelm,

This book was phototypeset by the authors using the excelient software
available on the UNIX system. The typesetting command read

pic files | tbl | egn | troff -me

pic is Brian Kernighan’s language for iypesetting figures; we owe Brian »
special debt of gratitude for accommodating our special and extensive figure- -
drawing needs so cheerfully. tbdl is Mike Lesk’s language for laying out
tables. eqn is Brian XKernighan and Lorinda Cherry’s language for typesetiing
mathematics. troff is Joe Ossana’s program for formatting text for a photo-
typesetter, which in our cas¢ was a Mergenthaler Linotron 20¥/N. The ms
package of troff macros was writien by Mike Lesk. In addition, we
managed the text using make due to Stu Feldman. Cross references within
the text were maintained using awk created by Al Aho, Brian Kernighan, and
Peter Weinberger, and sed created by Lee McMahon.

The authors would particularly like to acknowledge Patricia Solomon for
helping prepare the manuscript for photocomposition. Her cheerfulness and
expert typing were greatly appreciated. J. D. Ullman was supported by an
Einstein Fellowship of the Isracli Academy of Arts and Sciences during part of
the time in which this book was written. Finally, the authors would like to
thank AT&T Bell Laboratories for its support during the preparation of the
manuscript.

-= >

.V.A
. S.
.D. U.

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Chapter 3

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

Contents

Introduction to Compiling 1
ComMPIErS ...onvnitiiiiiiiiiii e 1
Analysis of the source programccooccovvvennenenn 4
The phases of a compilercoooiiiiiiiin, 10
Cousins of the compilerocooiiiiiiiiiiiin. 16
The grouping of phasesooooeiiiii. 20
Compiler-construction toolscocooeeiiiiieinneinnnnnn 22
Bibliographic notescooviiniiiiiiiieiiiiiiiieen, 23
A Simple One-Pass Compiler 25
OVEIVIBW ..ttiiitiiniiiet ettt et rr e eas e anees 25
Syntax definition ..o 26
Syntax-directed translation ... 33
Parsingcoiieiniiiiiiii 40
A translator for simple expressions rerver e 48
Lexical analysiscooviiiviiiin 54
Incorporating a symbol table 60
Abstract stack machinesooiiiii 62
Putting the techniques togetherooiien 69
EXEICISES ... nt e et 78
Bibliographic notesccccooiiiiiiii 81
Lexical Analysis 83
The role of the lexical analyzerc.ooeeiiienn. 84
Input bufferingccoooiiiiiii 88
Specification of tOKENScccoooiiiiiiiiiiii 92
Recognition of tOKeNsccoovviieiiiiiimniiinnns 98
A language for specifying lexical analyzers 105
FINite aULOMALA ..o.oviveneeeneniieniinineieisarieoreraassanieaones 113
From a regular expression to an NFAiinnn 12t
Design of a lexical analyzer generatorccoee 128
Optimization of DFA-based pattern matchers 134
EXEICISES +.veverirenaranenseneneionesneuinnasesessscecensasrsssansnanss 146

Bibliographic notescocovvieiriiiiii 157 -

viil . CONTENTS

Chapter 4 Syntax Analysis 159
4.1 The role of the parser ... 160

4.2 Context-free grammars ..., 165

4.3 Writing a grammarcoooiiiiniii 172

4.4 Top-down parsing e e 181

4.5 Bottom-up parsingcocooeiieiiiiiiiiiiii 195

4.6 Operator-precedence Parsingcoeveereeneniiinannneenes 203

4.7 LR PACSEIS .o.evininiiininiiiniiiiiii e e e 215

4.8 Using ambiguous grammarsooce, 247

4.9 Parser ENEIatOTSo.vviiiiiiieriueariionnnserieeaiaieencnns 257
EXEITISES . .euenininiiiiiiiiiaii ettt e e aaans L 267
Bibliographic notesooiiiii 2717

Chepier § Syntax-Directed Translation 279
5.1 Syntax-directed definitionscooooiiiii. 280

5.2 Construction of syntax treéescoceviiirieiiiiiiiniiinnns 287

5.3 Bottom-up evaluation of S-attributed definitions 293

5.4 L-attributed definitionsooooii 296

5.5 Top-down translationoocoiviiiiiiniiiiinnan. 302

5.6 Bottom-up evaluation of inherited attributes 308

5.7 Recursive evaluatorscccooovviiiiiiiiiiiniiiniiienn, 316

5.8 Space for attribute values at compile time 320

5.9 Assigning space at compiler-construction time 323

5.10 Analysis of syntax-directed definitions 329

| S50 {0 1= T OO PP 336
Bibliographic niotes ... 340

Chapter 6 Type Checking ' 343
6.1 Type SYSIEMSctuiiriniuiniiiiiiiiiieeeiet e eareeaaes 344

6.2 Specification of a simple type checker 348

6.3 Equivalence of type expressionsccooeeeviniiiinn. 352

6.4 Type CONVEISIONScuiiinieiiiiiriieaien e ciaaaes 359

6.5 Overloading of functions and operators 361

6.6 Polymorphic functionsccooiiiiiiiiin, 364

6.7 An algorithm for unificationc.oin 376
EXEICISES ..oouieiininiininiiiiiitiiiite it e e raess e e aseans 381
Bibliographic nOtesc.cceiiiiiiniiiiiiiiii 38¢

Chapter 7 Run-Time Environments - 389
7.1 Source Janguage iSSUEScooviicernirieireiiiiiiiiiaeias 389

7.2 Storage Organizationccoeeieveiniiiieiiieiieniiiiiinn. 396

7.3 Storage-allocation strategiesc.....coviiiiiiininiin. 401

7.4 Access to nonlocal NAMESccceiviiniiiiiiiiiiiiiiiiiiieenns 411

CONTENTS

ix
7.5 Parameter passingcoooviiiiiiiiiiiiii 424
7.6 Symbol tablesciiiiiii 473
7.7 Language facilities for dynamic storage aliocation 4490
7.8 Dynamic storage allocation technigques 4432
7.9 Storage allocation in Fortran 445

| SRS o L PPN 435

Biblographic POLESoioeiiimirriiiiiiiiiie i 461
Chapter 8 Intermediate Code Generation 483
8.1 Intermediate 1anguagescoooiiiiiiiiiiine, 464
8.2 Declarationsc.cocoiiiiiiiiiiiiiii e 473
8.3 Assignment statements 478
8.4 Boolean expressionsoocoiiiiiiiiiii 488
8.5 Case Statementscooieiiiiiiiiiiiiiiiie e 497
8.6 Backpatchingcoooiiiiiiiiiiiiii 500
8.7 Procédure callsoiiiiiiiiiiiiiii 506
EXEICISEScovevniiiiiiiiiiiiiiiiier e 508
Bibliographic notesc.ocooviiiiiiiiiiniiiiiie, 511
Chapter 9 Code Generation ' 513
9.1 Issues in the design of a code generatoroco0e 514
9.2 The target machinecooiiiiiiiiiiiinin 519
9.3 Run-time storage managementcoocooeeeneiniionenns 522
9.4 Basic blocks and flow graphs ... 528
9.5 Next-use informationcooviviviiiiiiiiiinn 534
9.6 A siinple code BEneratorcco.ccoiiiiiiiiiiiiii.. 535
9.7 Register allocation and assignment evreern i enas 541
9.8 The dag representation of basic blockseen. 546
9.9 Peephole optimizationcooooiiiiiiiiin 554
9.10 Generating code from dags P 557
9.11 Dynamic programming code- generat\on algorithm 567
9.12 Code-generator ZENETatOTScevevnernceerunmeiensiveuemnannns 572
EXETCISESoivvniunreninenrninieaen e nnamaecennceneineaennanes 580
Bibliographic NOtesoocooiiiiiiiiiiii 583
Chapter 10 Code Optimization 58S
10.1 INroductioncceceeevrniniiiiniioeiine i 586
10.2 The principal sources of optimizationooees 592
10.3 Optimization of basic blocks ..o 598
10.4 Loops in flow graphsooooiiiiiii 602
10.5 Introduction to global data-flow analysts 608
10.6 lterative solution of data-flow equations 624
10.7 Code-improving transformationscooeoeeiciiinnns 633
10.8 Dealing with aliases ... 648

10.9
10.10
10.11
10.12
10.13

Chapter 11

11.1
11.2
11.3
11.4

Chapter 12

12.1 EQN, a preprocessor for typesetting mathematics
Compilers for Pascalccooooevinin
The C compilersc.ccocevviniiniiiiiiiiiiinnn,
The Fortran H compilersl.
The Bliss/11 compilerooiii,
Modula-2 optimizing compiler

12.2
12.3
12.4
12.5
12.6

Appendix

Al
A2
A3
A4
A5
A6
A7

Data-flow analysis of structured flow graphs

Efficient data-flow algorithms
A tool for data-flow analysiscooeenl
Estimation of typescoiiniiin.
Symbolic debugging of optimized code
EXercisescoocoiiiiiiiiiiiin
Bibliographic notes

Want to Write a Compiler?

Planning a compiler
Approaches to compiler development
The compiler-development environment
Testing and maintenancecoevvinvnenen..

A Look at Some Compilers

A Compiler Project

Introduction ...
A Pascal subsetccooiiiiiiiiiiiins
Program structurecoooooiiiiiiion
Lexical CONVENtONSccceeeieeeeeiiinnnne.
Suggested €Xercisesooiiiiiiiiiiiiiiiin.
Evolution of the interpreter
Extensions TSR o

Bibliography

Index

CONTENTS

CHAPTER 1

Introduction
to Compiling

The principles and techniques of compiler writing are so pervasive that the
ideas found in this book will be used many times in the career of a computer
scientist. Compiler writing spans programming languages, machine architec-
ture, language theory, algorithms, and software engineering. Fortunately, a
few basic compiler-writing techniques can be used to construct translators for
a wide variety of languages and machines. In this chapter, we introduce the
subject of compiling by describing the components of a compiler, the environ-
~ ment in which compilers do their job, and some software tools that make it
easier to build compilers.

1.1 COMPILERS

Simply stated, a compiler is a program that reads a program written in one
language — the source language — and translates it into an equivalent program
in another language ~ the target language (see Fig. 1.1). As an important part
of this translation process, the compiler reports to its user the presence of
errors in the source program.

source - target
compiler P————»
program program
error
messages

Fig. 1.1. A compiler.

At first glance, the variety of compilers may appear overwhelming. There
are thousands of source languages, ranging from traditional programming
languages such as Fortran and Pascal to specialized languages that have arisen
in virtually every area of computer application. Target languages are equally
as varied; a target language may be another programming language, or the
machine language of any compuier between a microprocessor and &

2 INTRODUCTION T6 COMPILING SEC. iy

supercomputer. Comptlers are sometimes classified as single-pass, multi-pass,
load-and-go, debugging, or optimizing, depending on how they have been con-
structed or on vhat function they are supposed to perform. Despite this
apparent complexity, the basic tasks that any compiler must perform arc
essentially the same. By understanding these tasks, we can construct com-
pilers for a wide variety of source languages and target machines using the
same basic techniques. ‘

Our knowledge about how to organize and write compilers has increased
vastly since the first compilers started to appear in the early 1950°s. It is diffi-
cult to give an cxact date for the first compiler because initially a great deal of
experimentation and implementation was done independently by several
groups. Much of the early work on compiling dealt with the translation of
arithmetic formulas into machine code.

Throughout the 1950’s, compilers were considered notoriously difficult’ pro-
grams to write. The first Fortran compiler, for example, took 18 staff-years
to- implement (Backus et al. {1957]). We have since discovered systematic
techniques for handling many of the important tasks that occur during compi-
lation. Good implementation languages, programming environments, and
software tools have also been developed. With these advances, a substantial
compiler can be implemented even as a student project in a one-semester
compiler-design course.

The Analysis-Synthesis Model of Compilation

There are two parts to compilation: analysis and synthesis. The analysis part
breaks up the source program into constituent parts and creates an intermedi-
ate representation of the source program. The synthesis part constructs the
desired target program from the intermediate representation. Of the two
parts, synthesis requires the most specialized techniques. We shall consider
dnalysis informally in Section 1.2 and outline the wiy target code is syn-
thesized in a standard compiler in Section 1.3.

During analysis, the operations implied by the source program are deter-
- mined and recorded in a hierarchical structure called a tree. Often, a special
kind of tree called a syntax tree is used, in which each node represents an
operation and the children of a node represent the arguments of the operation.
For example, a syntax tree Tor an assignment statement is shown in Fig. 1.2.

=

3] \
position +
o ./// AN
initial *]
PN
rate 60

Fig. 1.2. Syntax tree for position:=initial +rate *60.

seC, 1.1 ’ COMPILERS 3

Many software tools that manipulate source programs first perform some

kind of analysis. Some examples of such tools include:

[

Structure editors. A structure editor takes as input as sequence of com-
mands to build a source program. The structure editor not only performs
the text-creation and modification functions of an ordinary text editor,
but it also analyzes the program text, putting an appropriate hierarchical
structure on the source program. Thus, the structure editor can perform
additional tasks that are useful in’ the preparation of programs. For
example, it can check that the input is correctly formed, can supply key-
words automatically (e.g., when the user types while, the editor supplies
the matching do and reminds the user that a conditional must come
between them), and can jump from a begin or left parenthesis to its
matching end or right parenthesis. Further, the output of such an editor
is often similar to the output of the analysis phase of a compiler.

Pretty printers. A pretty printer analyzes a program and prints it in such
a way that the structure of the program becomes clearly visible. For
example, comments may appear in a special font, and statements may
appear with an’ amount of indentation proportional to the depth of their
nesting in the hierarchical organization of the statements.

Static checkers. A static checker reads a program, analyzes it, and
attempts to discover potential bugs without running the program. The
analysis portion is often similar to that found in optimizing compilers of
the type discussed in Chapter 10. For example, a static checker may
detect that parts of the source program can never be executed, or that a
certain variable might be used before being defined. In addition, it can
catch logical errors such as trying to use a real variable as a pointer,
employing the type-checking techniques discussed in Chapter 6.

Interpreters. Instead of producing a target program as a translation, an
interpreter performs the operations implied by the source program. For
an assignment statement, for example, an interpreter might build a tree
like Fig. 1.2, and then carry out the operations at the nodes as it “walks”
the tree. At the root it would discover it had an assignment to perform,
so it would call a routine to evaluate the expression on the right, and then
store the resulting value in the location associated with the identifier
position. At the right child of the root, the routine would discover it
had to compute the sum of two expressions. It would call itself recur-
sively to compute the value of the expression rate»60. It would then
add that value to the value of the variable initial.

Interpreters are frequently used to execute command languages, since
each operator executed in a command language is usually an invocation of
a complex routine such as an editor or compiler. Similarly, some “‘very
high-level” languages, like APL, are normally interpreted bécause there
are many things about the data, such as the size and shape of arrays, that

4 INTRODUCTION TO COMPILING SEC. 1.1

cannot be deduced at compile time.

Traditionally, we think of a compiler as a program that translates a source
language like Fortran into the assembly or machine language of some com:
puter. However, there are seemingly unrelated places where compiler technol-
ogy is regularly used. The analysis portion in each of the following examples
is similar to that of a conventional compiler.

1. Text formatters. A text formatter takes input that is a stream of charac-
ters, most of which is text to be typeset, but some of which includes com-
mands to indicate paragraphs, figures, or mathematical structures like
subscripts and superscripts. We mention some of the analysis done by
text formatters in the next section.

2. Silicon compilers. A silicon compiler has a source language that is similar
or identical to a conventional programming language. However, the vari-
ables of the language represent, not locations in memory, but, logical sig-
nals (0 or 1) or groups of signals in a switching circuit. The output is a
circuit design in an appropriate language. See Johnson [1983], Ullman
11984}, or Trickey [1985] for a discussion of silicon compilation.

3. Query interpreters. A query interpreter translates a predicate containing
relational and boolean operators into commands to search a database for
records satisfying that predicate. (See Ullman [1982] or Date [1986].)

The Context of a Compiler

In addition to a compiler, several other programs may be required to create an
executable target program. A source program may be divided into modules
stored in separate files. The task of collecting the source program is some-
times entrusted to a distinct program, called a preprocessor. The preprocessor
may also expand shorthands, called macros, into source language statements.

Figure 1.3 shows a typical ‘‘compilation.” The target program created by
the compiler may require further processing before it can be run. The com-
piler in Fig. 1.3 creates assembly code that is translated by an assembler into
machine code and then linked togelher with_ some library routines into the
code that actually runs on the machine.

We shall consider the components of a compller in the next two sections;
the remaining programs in Fig. [.3 are discussed in Section 1.4

1.2 ANALYSIS OF THE SOURCE PROGRAM

In this scction, we introduce analysis and illustrate its use in some text-
formatting languages. The subject is treated in more detail in Chapters 2-4
and 6. In compiling, analysis consists of three phases:

I. Linear analysis, in which the stream of characters making up the source
program is read from left-to-right and grouped into tokens that are
sequences of characters having a collective meaning.

SEC. 1.2 ANALYSIS OF THE SOURCE PROGRAM 5

skcletal source program

preprocessor

source program

compiler

b

target assembly program

assembler

i

relocatable machine code

library,

loader/link-edito . .
i ' rclocatable object files

absolute machine code

Fig. 1.3. A languagc-processing system.

Hierarchical analysis, in which characters or tokens are grouped hierarchi-
cally into nested collections with collective meaning.

Semantic analysis, in which certain checks are performed to ensure that
the components of a program fit together meaningfully.

 Lexical Analysis

In a compiler, linear analysis is called lexical analysis or scanning. For exam-
ple, in lexical analysis the characters in the assignment statement

position := initial + rate * 60

would be grouped into the following tokens:

N kW -

The identifier position.
The assignment symbol :=.
The identifier initial.
The plus sign.

The identifier rate.

The multiplication sign.
The number 60.

The blanks ééparating the characters of these tokens would normaily be elim-
inated during lexical analysis.

5 INTRODUCTIGH TO COMPH NG SEC. .7

Syntax Analysis

Hierarchical analysis is called parsing or syntax analysis. 1t involves grouping
the tokens of the source program into grammatical phrases that are used by
the compiler to synthesize output. Usually, the grammatical phrases of the
source program are represented by a parse tree such as the one 'shown in Fig.
1.4.

assignment
statement

identifier - expression
| ~ o
position / + \
expression expression
ident iﬁt"’ / ! \
| expression expression
initial | |
identifier number

rate 60

Fig. 1.4. Parsc trcc for position:=initial +rate *60.

In the expression initial + rate * 60, the phrase rate« 60 isa logi-
cal unit because the usual conventions of arithmetic expressions tell us that
multiplication is performed before addition. Because the expression
initial + rate is followed by a , it is not grouped into a single phrase by
itself in Fig. 1.4.

The hierarchical structure of a program is usually expressed by recursive
rules. For example, we might have the following rules as part of the defini-
tion of expressions: '

1. Any identifier is an expression.
2. Any number is an expression.
3. If expression, and expression, are expressions, then so are

expression| + expression;
expression, * expression;
(expression,)

Rules (1) and (2) are (nonrecursive) basis rules, while (3) defines expressions
in terms of operators applied to other expressions. Thus, by rule (1), ini-
" tial and rate are expressions. By rule (2), 60 is an expression, while by
rule (3), we can first infer that rate# 60 is an expression and finally that
initial +rate » 60 is an expression.
_Similarly, many languages define statements recursively by rules such as:

SEC. 1.2 ANALYSIS OF THE SOURCE PROGRAM 7

L. If identifier | is an identifier, and expression; is an expression, then
identifier, := expression,
is a statement.
2. If expression, is an expression and statement, is a statement, then ¢

while (expression,) do statement,
if (expression,) then statement,

are statements.

The division between lexical and syntactic analysis is somewhat arbitrary.
We usually choose a division that simplifies the overall task of analysis. One
factor in determining the division is whether a source language comstruct is -
inherently recursive or not. Lexical constructs do not require recursion, while

- syntactic constructs often do. Context-free gPammars are a formalization of
recursive rules thiat can be used to guide syntactic analysis. They are intro-
duced in Chapter 2 and studied extensively in Chapter 4.

For example, recursion is not required to recognize identifiers, which are
typically strings of letters and digits beginning with a letter. We would nor-
mally recognize identifiers by a simple scan of the input stream. waiting until
a character that was neither a letter nor a digit was found, and then grouping
all the letters and digits found up to that point into an identifier token. The
characters so grouped are recorded in a table, calied a symbol table, and
removed from the input so that processing of the next token can begin.

On the other hand, this kind of linear scan is not powerful enough to
analyze expressions or statements. For example, we cannot properly match
parentheses in expressions, or begin and end in statements, without putting
some kind of hierarchical or nesting structure on the input.

position R position +
inicial » initial *
rate 60 rate inttoreal
,. | '
(a) o (b) 60

Fig. 1.5, Scmantic analysik inserts a conversion from integer to real.

The parse tree in Fig. 1.4 describes the syntactic structure of the input. A
more common internal representation of this syntactic structure is given by the
syntax tree in Fig. 1.5(a). A syntax tree is a compressed representation of the
parse tree in which the operators appear as the interior nodes, and the
operands of an operator are the children of the node for that operator. The
construction of trees such as the one in Fig. 1.5(a) is discussed in Section 5.2.

