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Preface

This collection of original research papers on visual cognition first appeared as a
special issue of Cognition: International Journal of Cognitive Science. The study
of visual cognition has seen enormous progress in the past decade, bringing impor-
tant advances in our understanding of shape perception, visual imagery, and
mental maps. Many of these discoveries are the result of converging investiga-
tions in different areas, such as cognitive and perceptual psychology, artificial
intelligence, and neuropsychology. This volume is intended to highlight a sample
of work at the cutting edge of this research area for the benefit of students and
researchers in a variety of disciplines. The tutorial introduction that begins the
volume is designed to help the nonspecialist reader bridge the gap between the
contemporary research reported here and earlier textbook introductions or litera-
ture reviews.

Many people deserve thanks for their roles in putting together this volume:
Jacques Mehler, Editor of Cognition; Susana Franck, Editorial Associate of Cog-
nition; Henry Stanton and Elizabeth Stanton, Editors of Bradford Books; Kath-
leen Murphy, Administrative Secretary, Department of Psychology, MIT; Loren
Ann Frost, who compiled the index; and the ad hoc Cognition referees who
reviewed manuscripts for the special issue. I am also grateful to Nancy Etcoff,
Stephen Kosslyn, and Laurence Parsons for their advice and encouragement.

Preparation of this volume was supported by NSF grants BNS 82-16546 and
BNS 82-19450, by NIH grant 1RO1 HD 18381, and by the MIT Center for Cogni-
tive Science under a grant from the A. P. Sloan Foundation.
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Visual cognition: An introduction*

STEVEN PINKER
Massachusetts Institute of Technology

Abstract

This article is a tutorial overview of a sample of central issues in visual cogni-
tion, focusing on the recognition of shapes and the representation of objects
and spatial relations in perception and imagery. Brief reviews of the state of
the art are presented, followed by more extensive presentations of contemporary
theories, findings, and open issues. I discuss various theories of shape recogni-
tion, such as template, feature, Fourier, structural description, Marr-Nishi-
hara, and massively parallel models, and issues such as the reference frames,
primitives, top-down processing, and computational architectures used in spa-
tial cognition. This is followed by a discussion of mental imagery, including
conceptual issues in imagery research, theories of imagery, imagery and per-
ception, image transformations, computational complexities of image pro-
cessing, neuropsychological issues, and possible functions of imagery. Connec-
tions between theories of recognition and of imagery, and the relevance of the
papers contained in this issue to the topics discussed, are emphasized through-
out.

Recognizing and reasoning about the visual environment is something that
people do extraordinarily well; it is often said that in these abilities an average
three-year old makes the most sophisticated computer vision system look
embarrassingly inept. Our hominid ancestors fabricated and used tools for
millions of years before our species emerged, and the selection pressures
brought about by tool use may have resulted in the development of sophisti-
cated faculties allowing us to recognize objects and their physical properties,
to bring complex knowledge to bear on familiar objects and scenes, to

*Preparation of this paper was supported by NSF grants BNS 82-16546 and 82-09540, by NIH grant
1ROtHD18381-01, and by a grant from the Sloan Foundation awarded to the MIT Center for Cognitive Sci-
ence. I thank Donald Hoffman, Stephen Kosslyn. Jacques Mehler, Larry Parsons, Whitman Richards, and Ed
Smith for their detailed comments on an earlier draft, and Kathleen Murphy and Rosemary Krawczyk for as-
sistance in preparing the manuscript. Reprint requests should be sent to Steven Pinker, Psychology Depart-
ment, M.LT., E10-018, Cambridge, MA 02139, U.S.A.



2 S. Pinker

negotiate environments skillfully, and to reason about the possible physical
interactions among objects present and absent. Thus visual cognition, no less
than language or logic, may be a talent that is central to our understanding
of human intelligence (Jackendoff, 1983; Johnson-Laird, 1983; Shepard and
Cooper, 1982).

Within the last 10 years there has been a great increase in our understand-
ing of visual cognitive abilities. We have seen not only new empirical de-
monstrations, but also genuinely new theoretical proposals and a new degree
of explicitness and sophistication brought about by the use of computational
modeling of visual and memory processes. Visual cognition, however, oc-
cupies a curious place within cognitive psychology and within the cognitive
psychology curriculum. Virtually without exception, the material on shape
recognition found in introductory textbooks in cognitive psychology would
be entirely familiar to a researcher or graduate student of 20 or 25 years ago.
Moreover, the theoretical discussions of visual imagery are cast in the same
loose metaphorical vocabulary that had earned the concept a bad name in
psychology and philosophy for much of this century. I also have the impres-
sion that much of the writing pertaining to visual cognition among researchers
who are not directly in this area, for example, in neuropsychology, individual
differences research, developmental psychology, psychophysics, and informa-
tion processing psychology, is informed by the somewhat antiquated and
imprecise discussions of visual cognition found in the textbooks.

The purpose of this special issue of Cognition is to highlight a sample of
theoretical and empirical work that is on the cutting edge of research on
visual cognition. The papers in this issue, though by no means a representa-
tive sample, illustrate some of the questions, techniques, and types of theory
that characterize the modern study of visual cognition. The purpose of this
introductory paper is to introduce students and researchers in neighboring
disciplines to a selection of issues and theories in the study of visual cognition
that provide a backdrop to the particular papers contained herein. It is meant
to bridge the gap between the discussions of visual cognition found in
textbooks and the level of discussion found in contemporary work.

Visual cognition can be conveniently divided into two subtopics. The first
is the representation of information concerning the visual world currently
before a person. When we behave in certain ways or change our knowledge
about the world in response to visual input, what guides our behavior or
thought is rarely some simple physical property of the input such as overall
brightness or contrast. Rather, vision guides us because it lets us know that
we are in the presence of a particular configuration of three-dimensional
shapes and particular objects and scenes that we know to have predictable
properties. ‘Visual recognition’ is the process that allows us to determine on
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the basis of retinal input that particular shapes, configurations of shapes,
objects, scenes, and their properties are before us.

The second subtopic is the process of remembering or reasoning about
shapes or objects that are not currently before us but must be retrieved from
memory or constructed from a description. This is usually associated with the
topic of ‘visual imagery’. This tutorial paper is divided into two major sec-
tions, devoted to the representation and recognition of shape, and to visual
imagery. Each section is in turn subdivided into sections discussing the
background to each topic, some theories on the relevant processes, and some
of the more important open issues that will be foci of research during the
coming years.

Visual recognition

Shape recognition is a difficult problem because the immediate input to the
visual system (the spatial distribution of intensity and wavelength across the
retinas—hereafter, the “retinal array”) is related to particular objects in
highly variable ways. The retinal image projected by an object—say, a
notebook—is displaced, dilated or contracted, or rotated on the retina when
we move our eyes, ourselves, or the book; if the motion has a component in
depth, then the retinal shape of the image changes and parts disappear and
emerge as well. If we are not focusing on the book or looking directly at it,
the edges of the retinal image become blurred and many of its finer details
are lost. If the book is in a complex visual context, parts may be occluded,
and the edges of the book may not be physically distinguishable from the
edges and surface details of surrounding objects, nor from the scratches,
surface markings, shadows, and reflections on the book itself.

Most theories of shape recognition deal with the indirect and ambiguous
mapping between object and retinal image in the following way. In long-term
memory there is a set of representations of objects that have associated with
them information about their shapes. The information does not consist of a
replica of a pattern of retinal stimulation, but a canonical representation of
the object’s shape that captures some invariant properties of the object in all
its guises. During recognition, the retinal image is converted into the same
format as is used in long-term memory, and the memory representation that
matches the input the closest is selected. Different theories of shape recogni-
tion make different assumptions about the long-term memory representations
involved, in particular, how many representations a single object will have,
which class of objects will be mapped onto a single representation, and what
the format of the representation is (i.e. which primitive symbols can be found
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in a representation, and what kinds of relations among them can be
specified). They will differ in regards to which sports of preprocessing are
done to the retinal image (e.g., filtering, contrast enhancement, detection of
edges) prior to matching, and in terms of how the retinal input or memory
representations are transformed to bring them into closer correspondence.
And they differ in terms of the metric of goodness of fit that determines
which memory representation fits the input best when none of them fits it
exactly.

Traditional theories of shape recognition

Cognitive psychology textbooks almost invariably describe the same three or
so models in their chapters on pattern recognition. Each of these models is
fundamentally inadequate. However, they are not always inadequate in the
ways the textbooks describe, and at times they are inadequate in ways that
the textbooks do not point out. An excellent introduction to three of these
models—templates, features, and structural descriptions—can be found in
Lindsay and Norman (1977); introductions to Fourier analysis in vision, which
forms the basis of the fourth model, can be found in Cornsweet (1980) and
Weisstein (1980). In this section I will review these models extremely briefly,
and concentrate on exactly why they do not work, because a catalogue of
their deficits sets the stage for a discussion of contemporary theories and
issues in shape recognition.

Template matching

This is the simplest class of models for pattern recognition. The long term
memory representation of a shape is a replica of a pattern of retinal stimula-
tion projected by that shape. The input array would be simultaneously
superimposed with all the templates in memory, and the one with the closest
above-threshold match (e.g., the largest ratio of matching to nonmatching
points in corresponding locations in the input array) would indicate the pat-
tern that is present.

Usually this model is presented not as a serious theory of shape recogni-
tion, but as a straw man whose destruction illustrates the inherent difficulty
of the shape recognition process. The problems are legion: partial matches
could yield false alarms (e.g., a ‘P’ in an ‘R’ template); changes in distance,
location, and orientation of a familiar object will cause this model to fail to
detect it, as will occlusion of part of the pattern, a depiction of it with wiggly
or cross-hatched lines instead of straight ones, strong shadows, and many
other distortions that we as perceivers take in stride.

There are, nonetheless, ways of patching template models. For example,
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multiple templates of a pattern, corresponding to each of its possible displace-
ments, rotations, sizes, and combinations thereof, could be stored. Or, the
input pattern could be rotated, displaced, and scaled to a canonical set of
values before matching against the templates. The textbooks usually dismiss
these possibilities: it is said that the product of all combinations of transforma-
tions and shapes would require more templates than the brain could store,
and that in advance of recognizing a pattern, one cannot in general determine
which transformations should be applied to the input. However, it is easy to
show that these dismissals are made too quickly. For example, Arnold Trehub
(1977) has devised a neural model of recognition and imagery, based on
templates, that addresses these problems (this is an example of a ‘massively
parallel’ model of recognition, a class of models I will return to later). Con-
tour extraction preprocesses feed the matching process with an array of sym-
bols indicating the presence of edges, rather than with a raw array of intensity
levels. Each template could be stored in a single cell, rather than in a space-
consuming replica of the entire retina: such a cell would synapse with many
retinal inputs, and the shape would be encoded in the pattern of strengths of
those synapses. The input could be matched in parallel against all the stored
memory templates, which would mutually inhibit one another so that partial
matches such as ‘P’ for ‘R’ would be eliminated by being inhibited by better
matches. Simple neural networks could center the input pattern and quickly
generate rotated and scaled versions of it at a variety of sizes and orientations,
or at a canonical size and orientation (e.g., with the shape’s axis of elongation
vertical); these transformed patterns could be matched in parallel against the
stored templates.

Nonetheless, there are reasons to doubt that even the most sophisticated
versions of template models would work when faced with realistic visual
inputs. First, it is unlikely that template models can deal adequately with the
third dimension. Rotations about any axis other than the line of sight cause
distortions in the projected shape of an object that cannot be inverted by any
simple operation on retina-like arrays. For example, an arbitrary edge might
move a large or a small amount across the array depending on the axis and
phase of rotation and the depth from the viewer. 3-D rotation causes some
surfaces to disappear entirely and new ones to come into view. These prob-
lems occur even if one assumes that the arrays are constructed subsequent to
stereopsis and hence are three-dimensional (for example, rear surfaces are
still not represented, there are a bewildering number of possible directions
of translation and axes of rotation, each requiring a different type of retinal
transformation).

Second, template models work only for isolated objects, such as a letter
presented at the center of a blank piece of paper: the process would get
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nowhere if it operated, say, on three-fifths of a book plus a bit of the edge
of the table that it is lying on plus the bookmark in the book plus the end of
the pencil near it, or other collections of contours that might be found in a
circumscribed region of the retina. One could posit some figure-ground
segregation preprocess occurring before template matching, but this has prob-
lems of its own. Not only would such a process be highly complex (for exam-
ple, it would have to distinguish intensity changes in the image resulting from
differences in depth and material from those resulting from differences in
orientation, pigmentation, shadows, surface scratches, and specular (glossy)
reflections), but it probably interacts with the recognition process and hence
could not precede it. For example, the figure-ground segregation process
involves carving up a set of surfaces into parts, each of which can then be
matched against stored templates. This process is unlikely to be distinct from
the process of carving up a single object into its parts. But as Hoffman and
Richards (1984) argue in this issue, a representation of how an object is
decomposed into its parts may be the first representation used in accessing
memory during recognition, and the subsequent matching of particular parts,
template-style or not, may be less important in determining how to classify
a shape.

Feature models

This class of models is based on the early “Pandemonium” model of shape
recognition (Selfridge, 1959; Selfridge and Neisser, 1960). In these models,
there are no templates for entire shapes; rather, there are mini-templates or
‘feature detectors’ for simple geometric features such as vertical and horizon-
tal lines, curves, angles, “I’-junctions, etc. There are detectors for every
feature at every location in the input array, and these detectors send out a
graded signal encoding the degree of match between the target feature and
the part of the input array they are ‘looking at’. For every feature (e.g., an
open curve), the levels of activation of all its detectors across the input array
are summed, or the number of occurrences of the feature are counted (see
e.g., Lindsay and Norman, 1977), so the output of this first stage is a set of
numbers, one for each feature.

The stored representation of a shape consists of a list of the features com-
posing the shape, in the form of a vector of weights for the different features,
a list of how many tokens of each feature are present in the shape, or both.
For example, the representation of the shape of the letter ‘A’ might specify
high weights for (1) a horizontal segment, (2) right-leaning diagonal segment,
(3) a left-leaning diagonal segment, (4) an upward-pointing acute angle, and
so on, and low or negative weights for curved and vertical segments. The
intent is to use feature weights or counts to give each shape a characterization
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that is invariant across transformations of it. For example, since the features
are all independent of location, any feature specification will be invariant
across translations and scale changes; and if features referring to orientation
(e.g. “left-leaning diagonal segment”) are eliminated, and only features dis-
tinguishing straight segments from curves from angles are retained, then the
description will be invariant across frontal plane rotations.

The match between input and memory would consist of some comparison
of the levels of activation of feature detectors in the input with the weights
of the corresponding features in each of the stored shape representations, for
example, the product of those two vectors, or the number of matching fea-
tures minus the number of mismatching features. The shape that exhibits the
highest degree of match to the input is the shape recognized.

The principal problem with feature analysis models of recognition is that
no one has ever been able to show how a natural shape can be defined in
terms of a vector of feature weights. Consider how one would define the
shape of a horse. Naturally, one could define it by giving high weights to
features like ‘mane’, ‘hooves’, ‘horse’s head’, and so on, but then detecting
these features would be no less difficult than detecting the horse itself. Or,
one could try to define the shape in terms of easily detected features such as
vertical lines and curved segments, but horses and other natural shapes are
composed of so many vertical lines and curved segments (just think of the
nose alone, or the patterns in the horse’s hide) that it is hard to believe that
there is a feature vector for a horse’s shape that would consistently beat out
feature vectors for other shapes across different views of the horse. One
could propose that there is a hierarchy of features, intermediate ones like
‘eye’ being built out of lower ones like ‘line segment’ or ‘circle’, and higher
ones like ‘head’ being built out of intermediate ones like ‘eye’ and ‘ear’
(Selfridge, for example, posited “computational demons” that detect Boolean
combinations of features), but no one has shown how this can be done for
complex natural shapes.

Another, equally serious problem is that in the original feature models the
spatial relationships among features—how they are located and oriented with
respect to one another—are generally not specified; only which ones are
present in a shape and perhaps how many times. This raises serious problems
in distinguishing among shapes consisting of the same features arranged in
different ways, such as an asymmetrical letter and its mirror image. For the
same reason, simple feature models can turn reading into an anagram prob-
lem, and can be shown formally to be incapable of detecting certain pattern
distinctions such as that between open and closed curves (see Minsky and
Papert, 1972).

One of the reasons that these problems are not often raised against feature
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models is that the models are almost always illustrated and referred to in
connection with recognizing letters of the alphabet or schematic line draw-
ings. This can lead to misleading conclusions because the computational prob-
lems posed by the recognition of two-dimensional stimuli composed of a
small number of one-dimensional segments may be different in kind from the
problems posed by the recognition of three-dimensional stimuli composed of
a large number of two-dimensional surfaces (e.g., the latter involves compen-
sating for perspective and occlusion across changes in the viewer’s vantage
point and describing the complex geometry of curved surfaces). Furthermore,
when shapes are chosen from a small finite set, it is possible to choose a
feature inventory that exploits the minimal contrasts among the particular
members of the set and hence successfully discriminates among those members,
but that could be fooled by the addition of new members to the set. Finally,
letters or line drawings consisting of dark figures presented against a blank
background with no other objects occluding or touching them avoids the
many difficult problems concerning the effects on edge detection of occlusion,
illumination, shadows, and so on.

Fourier models

Kabrisky (1966), Ginsburg (1971, 1973), and Persoon and Fu (1974; see
also Ballard and Brown, 1982) have proposed a class of pattern recognition
models that that many researchers in psychophysics and visual physiology
adopt implicitly as the most likely candidate for shape recognition in humans.
In these models, the two-dimensional input intensity array is subjected to a
spatial trigonometric Fourier analysis. In such an analysis, the array is decom-
posed into a set of components, each component specific to a sinusoidal
change in intensity along a single orientation at a specific spatial frequency.
That is, one component might specify the degree to which the image gets
brighter and darker and brighter and darker, etc., at intervals of 3° of visual
angle going from top right to bottom left in the image (averaging over changes
in brightness along the orthogonal direction). Each component can be con-
ceived of as a grid consisting of parallel black-and-white stripes of a particular
width oriented in a particular direction, with the black and white stripes
fading gradually into one another. In a full set of such grating-like compo-
nents, there is one component for each stripe width or spatial frequency (in
cycles per degree) at each orientation (more precisely, there would be a
continuum of components across frequencies and orientations).

A Fourier transform of the intensity array would consist of two numbers
for each of these components. The first number would specify the degree of
contrast in the image corresponding to that frequency at that orientation
(that is, the degree of difference in brightness between the bright areas and
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the dark areas of that image for that frequency in that orientation), or,
roughly, the degree to which the image ‘contains’ that set of stripes. The full
set of these numbers is the amplitude spectrum corresponding to the image.
The second number would specify where in the image the peaks and troughs
of the intensity change defined by that component lie. The full set of these
numbers of the phase spectrum corresponding to the image. The amplitude
spectrum and the phase spectrum together define the Fourier transform of
the image, and the transform contains all the information in the original
image. (This is a very crude introduction to the complex subject of Fourier
analysis. See Weisstein (1980) and Cornsweet (1970) for excellent nontechni-
cal tutorials).

One can then imagine pattern recognition working as follows. In long-term
memory, each shape would be stored in terms of its Fourier transform. The
Fourier transform of the image would be matched against the long-term
memory transforms, and the memory transform with the best fit to the image
transform would specify the shape that is recognized.!

How does matching transforms differ from matching templates in the orig-
inal space domain? When there is an exact match between the image and one
of the stored templates, there are neither advantages nor disadvantages to
doing the match in the transform domain, because no information is lost in
the transformation. But when there is no exact match, it is possible to define
metrics of goodness of fit in the transform domain that might capture some
of the invariances in the family of retinal images corresponding to a shape.
For example, to a first approximation the amplitude spectrum corresponding
to a shape is the same regardless of where in the visual field the object is
located. Therefore if the matching process could focus on the amplitude
spectra of shape and input, ignoring the phase spectrum, then a shape could
be recognized across all its possible translations. Furthermore, a shape and
its mirror image have the same amplitude spectrum, affording recognition of
a shape across reflections of it. Changes in orientation and scale of an object
result in corresponding changes in orientation and scale in the transform, but
in some models the transform can easily be normalized so that it is invariant
with rotation and scaling. Periodic patterns and textures, such as a brick wall,
are easily recognized because they give rise to peaks in their transforms
corresponding to the period of repetition of the pattern. But most important,
the Fourier transform segregates information about sharp edges and small

'In Persoon and Fu's model (1974), it is not the transform of brightness as a function of visual field position
that is computed and matched, but the transform of the tangent angle of the boundary of an object as a
function of position along the boundary. This model shares many of the advantages and disadvantages of
Fourier analysis of brightness in shape recognition.
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details from information about gross overall shape. The latter is specified
primarily by the lower spatial-frequency components of the transform (i.e.,
fat gratings), the former, by the higher spatial-frequency components (i.e.
thin gratings). Thus if the pattern matcher could selectively ignore the higher
end of the amplitude spectrum when comparing input and memory transforms,
a shape could be recognized even if its boundaries are blurred, encrusted with
junk, or defined by wiggly lines, dots or dashes, thick bands, and so on.
Another advantage of Fourier transforms is that, given certain assumptions
about neural hardware, they can be extracted quickly and matched in parallel
against all the stored templates (see e.g., Pribram, 1971).

Upon closer examination, however, matching in the transform domain
begins to lose some of its appeal. The chief problem is that the invariances
listed above hold only for entire scenes or for objects presented in isolation.
In a scene with more than one object, minor rearrangements such as moving
an object from one end of a desk to another, adding a new object to the desk
top, removing a part, or bending the object, can cause drastic changes in the
transform. Furthermore the transform cannot be partitioned or selectively
processed in such a way that one part of the transform corresponds to one
object in the scene, and another part to another object, nor can this be done
within the transform of a single object to pick out its parts (see Hoffman and
Richards (1984) for arguments that shape representations must explicitly de-
fine the decomposition of an object into its parts). The result of these facts
is that it is difficult or impossible to recognize familiar objects in novel scenes
or backgrounds by matching transforms of the input against transforms of
the familiar objects. Furthermore, there is no straightforward way of linking
the shape information implicit in the amplitude spectrum with the position
information implicit in the phase spectrum so that the perceiver can tell
where objects are as well as what they are. Third, changes in the three-dime-
sional orientation of an object do not result in any simple cancelable change
in its transform, even it we assume that the visual system computes three-di-
mensional transforms (e.g., using components specific to periodic changes in
binocular disparity).

The appeal of Fourier analysis in discussions of shape recognition comes
in part from the body of elegant psychophysical research (e.g., Campbell and
Robson, 1968) suggesting that the visual system partitions the information in
the retinal image into a set of channels each specific to a certain range of
spatial frequencies (this is equivalent to sending the retinal information
through a set of bandpass filters and keeping the outputs of those filters
separate). This gives the impression that early visual processing passes on to
the shape recognition process not the original array but something like a
Fourier transform of the array. However, filtering the image according to its
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spatial frequency components is not the same as transforming the image into
its spectra. The psychophysical evidence for channels is consistent with the
notion that the recognition system operates in the space domain, but rather
than processing a single array, it processes afamily of arrays, each one con-
taining information about intensity changes over a different scale (or,
roughly, each one bandpass-filtered at a different center frequency). By pro-
cessing several bandpass-filtered images separately, one obtains some of the
advantages of Fourier analysis (segregation of gross shape from fine detail)
without the disadvantages of processing the Fourier transform itself (i.e. the
utter lack of correspondence between the parts of the representation and the
parts of the scene).

Structural descriptions

A fourth class of theories about the format in which visual input is matched
against memory holds that shapes are represented symbolically, as structural
descriptions (see Minsky, 1975; Palmer, 1975a; Winston, 1975). A structural
description is a data structure that can be thought of as a list of propositions
whose arguments correspond to parts and whose predicates correspond to
properties of the parts and to spatial relationships among them. Often these
propositions are depicted as a graph whose nodes correspond to the parts or
to properties, and whose edges linking the nodes correspond to the spatial
relations (an example of a structural description can be found in the upper
left portion of Fig. 6). The explicit representation of spatial relations is one
aspect of these models that distinguishes them from feature models and allows
them to escape from some of the problems pointed out by Minsky and Papert
(1972).

One of the chief advantages of structural descriptions is that they can
factor apart the information in a scene without necessarily losing information
in it. It is not sufficient for the recognition system simply to supply a list of
labels for the objects that are recognized, for we need to know not only what
things are but also how they are oriented and where they are with respect to
us and each other, for example, when we are reaching for an object or
driving. We also need to know about the visibility of objects: whether we
should get closer, turn up the lights, or remove intervening objects in order
to recognize an object with more confidence. Thus the recognition process
in general must not boil away or destroy the information that is not diagnostic
of particular objects (location, size, orientation, visibility, and surface prop-
erties) until it ends up with a residue of invariant information; it must factor
apart or decouple this information from information about shape, so that
different cognitive processes (e.g., shape recognition versus reaching) can
access the information relevant to their particular tasks without becoming
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overloaded, distracted, or misled by the irrelevant information that the retina
conflates with the relevant information. Thus one of the advantages of a
structural description is that the shape of an object can be specified by one
set of propositions, and its location in the visual field, orientation, size, and
relation to other objects can be specified in different propositions, each bear-
ing labels that processing operations can use for selective access to the infor-
mation relevant to them.

Among the other advantages of structural descriptions are the following.’
By representing the different parts of an object as separate elements in the
representation, these models break up the recognition process into simpler
subprocesses, and more important, are well-suited to model our visual sys-
tem’s reliance on decomposition into parts during recognition and its ability
to recognize novel rearrangements of parts such as the various configurations
of a hand (see Hoffman and Richards (1984)). Second, by mixing logical and
spatial relational terms in a representation, structural descriptions can dif-
ferentiate among parts that must be present in a shape (e.g., the tail of the
letter ‘Q’), parts that may be present with various probabilities (e.g., the
horizontal cap on the letter ‘J’), and parts that must not be present (e.g., a
tail on the letter ‘O’) (see Winston, 1975). Third, structural descriptions
represent information in a form that is useful for subsequent visual reasoning,
since the units in the representation correspond to objects, parts of objects,
and spatial relations among them. Nonvisual information about objects or
parts (e.g., categories they belong to, their uses, the situations that they are
typically found in) can easily be associated with parts of structural descrip-
tions, especially since many theories hold that nonvisual knowledge is stored
in a propositional format that is similar to structural descriptions (e.g.,
Minsky, 1975; Norman and Rumelhart, 1975). Thus visual recognition can
easily invoke knowledge about what is recognized that may be relevant to
visual cognition in general, and that knowledge in turn can be used to aid in
the recognition process (see the discussion of top-down approaches to recog-
nition below).

The main problem with the structural description theory is that it is not
really a full theory of shape recognition. It specifies the format of the rep-
resentation used in matching the visual input against memory, but by itself it
does not specify what types of entities and relations each of the units belong-
ing to a structural description corresponds to (e.g., ‘line’ versus ‘eye’ versus
‘sphere’; ‘next-to’ versus ‘to-the-right-of’ versus ‘37-degrees-with-respect-to’),
nor how the units are created in response to the appropriate patterns of
retinal stimulation (see the discussion of feature models above). Although
most researchers in shape recognition would not disagree with the claim that
the matching process deals with something like structural descriptions, a



