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PREFACE

The present book is an introduction to stochastic processes,
Brownian motion processes, Gaussian processes, Wiener mea-

sure and Wiener integrals. Below is a brief outline of its contents.

In Chapter 1, it is shown that a stochastic process on an
arbitrary probability space induces a probability measure in the
space of all real valued functions and that the process can ﬂlen
be represented by a process on the function space. This is done
by means of the Kolmogorov extension theorem, a detailed proof
of which is given here. Separability, measurability and continuity
of a stochastic process are discussed in this chapter. There is
also a study of infinite dimensional random vectors. Chapter 2 is
a brief treatise of martingales. The main objects here are the
martingale convergence theorem and the martingale closing theor -
em. Chapter 3 begins with an existence proof of additive processes
(i.e., processes with independence increments). This is followed
by a discussion of sample function properties of additive processes.
The Brownian motion process is then characterized as an additive
process with continuous sample functions. In Chapter 4 the exist-
ence of a Gaussian process having an arbitrarily given pair of real
valued function and positive definite symmetric function as its
mean and covariance function is proved. In Chapter 5, the sto-
chastic integral of stepwise stochastic process with respect to a
continuous Brownian motion process is defined as a random vari-
able which is the Riemann-Stieltjes integréls of sample functions

of the former process with respect to those of the latter. This

-
-
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iv PREFACE
definition is then extended to a wider class of stochastic processes
satisfying certain measurability and integrability conditions. In
Chapter 6, Héjek's proof of the Feldman -Héjek dichotomy that two
Gaussian measures on a function space are either equivalent or
singular is given. In Chapter 7 the Wiener measure is first con-
strﬁcteér on the space of all real valued functions. Then it is
shown that the subspace consisting of the continuous functions has
an outermeasure equal to 1 and thus inherits a probability mea-
sure from the containing space of all real valued functions. Chap-
ter' 8 contains the Cameron-Martin translation theorem of Wiener
integrals. The translation theorem in § 34 is a particular case of
a more ger_xeral theorem in Cameron and Martin [2]. 1 presented

it here because of the relative brevity of its proof and because of

its application.

The bibliography is not intended to be complete. Rather,
it is a list of publications which I referred to or drew material
from in writing this book. Gelfand and Yaglom [1], Kovalchik
[1], Yaglom (1] and Shepp [1] contain longer lists of publications
in Wiener integrals and the Feldma.n-Héjek dichotomy up to the

times of their publication.

The prerequisite for, ‘read‘in‘g this book is a good back-
ground in real analysis and some knowledge of measure theoretic
probability theory. In the Appendix I collected the theorems in
probability theory along with definitions needed in stating them.,
The numberings of these definitions and theorems are preceded by
the letter- ‘A. Thus for instance Theorem A4.2 appears in §4 of
the Appendix. Proofs of these theorems can be found in most .

standard works in probability theory and real analysis.
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Chapter 1
STOCHASTIC PROCESSES

§1. STOCHASTIC PROCESSES

A stochastic process is by definition a collection of random
variables [Xt ,t €D} defined on a probability space (Q,8, P)
where the index set D is a s‘ubset of the real line R!. Thus a
stochastic process X is a real-valued function X(t,w) on DXQ
which is a 8- measurable function on Q for each t€D. We shall
occasior;ally use the notation X(t) to mean the random variable
X(t, *). The index set D is called the domain of definition of the
stochastic process. For each wE€ Q, the real-valued function
X(*,w) is called a sample function or a sample path of the stochas-
tic process. Sometimes it is necessary to permit some of the
random variables X(t, *), t€D, to assume extended real values,
and then we speak of an extended real-vaiued stochastic process.

Otherwise a stochastic process is always real valued.

Definition 1.1 Two stochastic processes X nd Y ona
probability space (©,9,P) and DcC Rl are said to be equivalent!
if, for every t€D, X(t,w) = Y(t,w) for a.e. W, i.e., there exists
A €%® with P(A) =0 such that X(t,w) = Y(t,w) for w€ A", X
and Y are said to be almost surely equal if the sample functions
of X and Y are-identical for a.e. w, i.e., there exists Ae®

with P(A) = 0 such that X(*,w) = Y(*,®) for w€ AS,

Definition 1.2 A stochastic process X on a probability
space (Q,98,P) and D c R! is said to be almost surely continuous

if a.e. sample function is continuous on: D, i.e., there exists
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A€B with P(N) =0 such that X(*,w) is a continuous function on
D for wéAS.

Remark 1.3 Two almost surely continuous stochastic

processes which are equivalent are in fact almost surely equal.

Proof Let X and Y be almost surely continuous and
’equival'ent stochastic processes on ((3,8,P) and D. Let A€ 8 with
P(A) 7 0 besuchthat X(*,w) and Y(°,w) are continuouson D for
w€A®. Let S= [sn, n=1,2,-+} bea countable dense subsetof D whose
elements arenumberedinanarbitrary way. By the equivalence of X

and Y, for every n there exists )\né 8 with P(An) = 0 suchthat
c
X(sn, w) = Y(sn’ w) for we€ I\n .

-]
Let A = Un=l An. Then A €8 with P(A) =0 and

c
X(sn,w) = Y(sn, w) for n=1,2, when u)EI\cn .

On the other hand for an arbitrary t€D and w¢€ /\c, X(t, w) =

lim X(sn ,w) and Y(t,w) = lim

K . . Y(snk, w) for every sub-
sequence {snk} c {sn} such that lim snk= t. Then from the
fact that X(s_ ,w) = Y(s_ ,w), k=1,2,°, for .w€A ¢ we have

Py "k ®
X(t,w) = Y(t,w) for we(AUA S, m

Definition 1.4  Given a stochastic process X ona
probability space (Q,8,P) and Dc_Rl. Let T = {tl,tz, "',tn}
be a finite sequence of distinct elements of D. Consider the
transformation XT = thf"tnz (X(tl, ), 0, x(tn, -)) of O into rR®
ind let QXT= th et be the n-dimensional probability distribution

1 'n

etermined by XT’ i.e., the probability measure on the o-field of
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Borel sets in R", 8", defined by

-1 n
QXT(E) = P(x(B)) for EE€H.

Let T be the collection of all the T's. Then (¢, ,T€Z} is called the
T
system of finite dimensional probability distributions determined by X.

Remark 1.5 For two equivalent stochastic processes X
1
and Y on a probability space (Q, B, P) and Dc R we have

8 =% for every TEZX,
XT YT

Proof Let T = {tl, tyr s tn}. Since a probability
measure on 8" is uniquely determined by its values for intervals
in R" of the type I = (al,bl] X eee X (ozn, bn], to show that

3. =@ it suffices to show that &_ (I) = &_ (I) for every; 1.
XT YT ' XT YT

Now at each t‘:k, k=1,2,°*,n, from the equivalence of X and Y
there exists’ AkG 8 with P(Ak) =0 such that X(tk, w) = Y(tk, w)

c n
when wEl\k . Let A= Uk:l Ak. Then P(A) = 0 so that

@XT(I) = p{w €Q; Kb, v) € (o k=1,2, n}

i Picds
[
P{we A% X(t,, 0) € (@, b, ], k=1,2, ,n}

c LER ]
plwen Yt 0) € (b ] k=12, 0}
= P{wen; ¥(e, w € (b ), k=12, n}

=8 (. o
YT

§2. EXISTENCE OF A STOCHASTIC PROCESS WITH A GIVEN
SYSTEM OF FINITE DIMENSIONAL PROBABILITY DISTRIBUTIONS

In §1 we saw that a stochastic process X on a probability

space (,%,P) and Dc R1 determines a system of finite
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dimensional probability distributions {# T €X} where I is the

’
xT
collection of all finite sequences of distinct elements
T = {t}, ty, -, t,} from D. We also saw that if X and Y are
two equivalent stochastic processes on ({,8,P) and D then

] =9 for every T €X. It is natural to ask the question:
XT YT

Given a system of finite dimensional probability distributions

”T’ T €%} does a stochastic process X on some probability
space (£,8,P) and D exist which has [QT. T €I} as its system -
of finite dimensional probability distributions, that is, QX = QT
for every TE€X? The answer to this question is in the affTir-mative
provided that the system {QT,T €%} satisfies certain consistency
conditions. To prove this we need the Kolmogorov Extension

Theorem.

[I] The Kolmogorov Extension Theorem

Given an arbitrary set A and the collection RA of all
real-valued functions defined on A. An element of RA is denoted
by w= (w(oz), a€A> and the real number w(a) is called the
a@-coordinate of w. For a finite sequence of distinct elements of
A, {al, ey, an}, the projection of RA onto Rn with index

{al, : ,an}, namely, pal_._an, is defined by

7 n A
pal.“ a'n(u‘!) = (w(cvl). ,w(an)) €R  for every WER .
The Borel cylinder in RA with index {al, oy, an} and base Beib“
is a subset of RA defined by

P -1 A
@ e (B) = {wER H pal"'an(w)EB} .

Let ch - be the collection of all Borel cylinders in RA with
1 n
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index {al, e, an}, ie.,

<l .n -1 n
By eq “Py g ®={p_ .. ~'®) Be®?}
S | dn u_l % il | qn

. and let

a = U a seon
% “n

where the union is over all finite sequences of distinct elements of
A. As we shall show in Remark 2.2, Ga

is a field of subsets of RA.

is a O-field and @&

Theorem 2.1 Kolmogorov Extension Theorem. Let p
be a set function defined on the field 8 = U ﬁa g ‘of subsets of
1 5

RA satisfying the condition that, for every {al, o, an}, b is a

probability measure on l:h.e o-field Sa ey * Then B can be ex-
1
tended uniquely to be a probability measure on the o-field o(3)

generated by 8.

Before we prove Theorem 2.1 let us enumerate some

pertinent properties of 80 e.q and 8 in the form of a remark.
1 n
Remark 2.2 1°. ﬂa - is a O-field of subsets of
A 1 n
R .
Proof (1) R®:=p “YR™). Thus R®€a
~root o . @ o
1 n. 1 n
-1
(2) | Let E‘G Ga g Then E = Py oee g (B) for some
1 n 1 n
B€®" g0 that EC = 1% ea .
Py ...
a o
1 n 1 n
(3) Let {E,i=1,2,""}c8 . Then
i a o
1 n
E =p -l(B.) for some B € 8" so that
1 Ql"' a 1 . 1

n
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UE,=Up, .. ~®)=p .. ~(UB)es .. .0
izl i=1 7% P e g ! % %

[+] T
2", If E€ i!a vor gy then by the definition of Ga

1 N 1... an

-1
there exists some B€ B  such that E = | I (B). The set B

1 qn
is uniquely determined by E, i.e., if Bl’ BZ € 8", B1 * BZ’ then
P 'l(B ) ¥p 'l(B ) or, equivalently, if E,E_€3
Qo 1 @t a 2 ’ ¥ EpE, Qoo A
}' n 1 n ) 1 n
-1 =1 n
= = i B
and E1 pa ey (Bl)’ E2 Py g (Bz) with BI,BZG
h | n 1 n
then El = E2 implies B1 = BZ. This is from the fact that
Py ey (El) =B}, P, g (EZ) =B, so that E, =E, implies
1 n n n
Bl = BZ.
3° Consider 3 =U 3 I E€3 then E€3
T P
1 n 1 n

s |
for some index {« , T, } and E = P {B) for some
1 n Otl"'cx

n
B€®" which is uniquely determined as long as {orl, T, ozn} is

fixed according to 2°. However E may belong to other o-fields

than 8 . For instance if E = p -I(B) then certainly
o e o o
1 n 1 n
-1 1
= ; 3 +
E pa . (BXR") with an arbitrary cvm_léA, arrf-l cxl, e
1 n+l
so that EEGQ e .
1 n ntl

Also if NI = {Ill, eee TIn} is a permutation of {1,**,n} and

T(B) € B" is the permuted set of B€ 8" by II, i.e., the set in RrR"

traced by (8 -+ € )€R™ when (§1,”‘,§n)ERn traces B, then
1 n
-1 -1
certainly E=p_ (B)=p_ .. (H(B)) so that
dl un anl ann
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E€ GQ ..o 2lso. Notealsothat 38 = 8 a
n,o o % “m %

1 n . 1 . mn

(<]

4, Let E€3. As we saw in 3°, E has more than one

representation by finite dimensional Borel sets. A representation

E = pa - -1(B), B¢ ﬂn, is called a minimal representation for E
1 n :

if B is not the Cartesian product of Rl with an n-1 dimensional

Borel set. The space RA, for any index [o'l, e, an}, being

representable as Py o ~1(Rn) only, has no minimal representa-
1 n
. A . -1
tion. For any E€3, E # R", any reprgsentation E TPy eee g (B),
] 1 n
BE€ ﬂn, which is not already a minimal representation can be re-

duced to a minimal representation since E canalso be given as

E = Py v —I(H(B)> where 0(B) = B’ xR} with an n-1
n. 1
1 n

dimensional Borel set B’ and consequently E = P, L’

o (B).
1 n-l

If this last representation is not yet a minimal representation we
repeat the process of reduction until we arrive at a minimal

representation.

5%, Let E€3, E #R”, and let p 'I(B ), B, € 8"
oo 1 1
n
-1 m - -
Pg ... (Bz), BZE B, be two minimal representations of E.
1 m

} for some permuta-

Then m=n and {51, ”',Bm} = {dnl, "',Otnn
i ={n ... 0 =
tion 1 [ o oz} of {1,--,n} and BZ H(Bl)'
1 n
Proof (1) To show m=n, assume for instance n<m.
Then for some j, we have B, #@ ,---a . Then B_ must be the
0 Jg 1 n 2 -
Cartesian product of R1 and an m-1 dimensional Borel set
-1
contradicting the minimaliity of the representation Pg ... (BZ).
1 "m



8 1. STOCHASTIC PROCESSES

Thus n 2 m. Sirhilarly we have m 2 n and hence m=n.

(2) The argument in (1) shows not only that m=n but

also that as two point sets {al,'", an} and (Bl,---, Bn} are equal.

(3) Now that [cxl,-", an‘} and [Bl,"', Bn] are equal as
point sets, there exists a permutation n= {Hl,"',ﬂn} of {1,"', n}

so that {Bl’..., Bn} = {anlr"'v ann}' Then

E = p,,l...,n"(B,) - p"'nl"'“n: (wB))- pﬁx""’: (us)).

But E=pg g ’I(BZ) also. Thus by 2°, B, = I(B,). a
1 n .

6°. 3 is a field of subsets of R.

-l
Proof (1) R®€3. Infact R®*=p _ ®Mes
al an | an

for every [al,"', ctn}.

2) If EE€3 then EE€3 for some {al,---, an] and

e
n
hence E€€3 Cc 8 since 8 is a O-field.
(VRSLT] o
1 n 1 n
=1 n
= d 3
(3) Let El' EZGB. Then E1 pal_"an (Bl)’ BIG )

-1 m
and Ez_pslmam (B,), B,€®". If {al %} and {Bl,-", Bm}

are disjoint as point sets then we have

24

- | m .
(Bl XR ), EZ- P

E/ =p, ..
1 @y dnBl Bm

-1, _n
(R xB,)
o an Bl Bm 2

and hence
=1 m n
= 8
EIU Ez.p (BIXR UR XBZ)GEQ- <8,

qlo--an Bl.--Bm V l -aan BlnouBrh

If {Otl,"', an} and [Bl,"',Bm} are not disjoint as point sets then
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permute {al,'".an}, {Bl,"',ﬂm}, B, and B, if necessary so
that

ai= Bi for i=1.2.".|‘c and ai* Bci for i:‘+1,"','n,j=l,-l:l,-o-'m_

Then
Ey= Pal...o,:(Bl) =Py, 0y 3“1...51:(81 xr™ %)
F2” paf"axn.l(Bz) " ey By By “z+1""’:(B2 ==
" Paprag o ey s By (scs > =™h)

with a suitable permutation . Then El V) E2 Etsa c 3,

%P Pm o
Lemma 2.3  Given a k-dimensional probability space

(Rk, ﬁk, §). For every A€ 85 and € >0 there exist compact sets
C and D suchthat Cc A, Dc AS, and #(A-C), §(A°-D)<e.

. Proof Let & be the collection of members of B« for
which the statement of the lemma holt_ls. Let 3k be the collection
of subsets of Rk of the type (al,bl] XX (ak. bk] which generates
the o-field B If we show that 3°C & and that & is a o-field

then ®%c f, and the proof is complete.

We show first that Skc ! Nowif A€ Sk then clearly both
A and A\c are limits of monotone increasing sequences of com-
pact sets {Cn, n=1,2,">'} and {Dn, n=1,2, '} so that, for

sufficiently large n, we have #(A- Cg), $(AS- Dn) <¢ and A€ R,

Next we show that & is a o-field. First of all, RkE Skc R,
Secondly by the definition of &, A€ ® implies A€ R, Finally let



