NcGraw-Hill
* PERSONAL COMPUTER
PROGRAMMING ENCYCLOPEDIA

'LANGUABES AND OPERATING SYSTEMS

Second Edition

Wililam J. Bimnes, Edilor

McGraw-Hill
PERSONAL GOMPUTER
PROGRAMMING ENCYCLOPEDIA

LANGUAGES AND OPERATING SYSTEMS

Second Edition

William J. Birnes, Editor
William P. Woodall, Technical Editor

Nancy Hayfield, Production Editor

McGraw-Hill Publishing Company

New York St Louls San Francisco Auckiand Bogotd
Caracas Colorado Springs Hamburg Lisbon
London Madrid Mexico Milan Montreal
New Delhi Oklahoma City Panama Parls
. San Juan S#o Paulo Singapore
Sydney Tokvo Toronto

The following language and operating systems names appearing in this book
are tradematks, with the owner’s name given in pareatheses. Failure to inclnde
mynmehuelbouldnotbeeomtmedupemmmwmpuxiblemdumrk
. » Ada (Department of Defense) « APL (IBM Corp.) » Microsoft BASIC
MMC«N ZBASIC (Zenith Corp. and Microsoft Corp.) « Compiled
BASIC (Digital Research Inc.) + S-BASIC (Topaz Inc.) « Applesolt BASIC
" (Apple Computer Inc. and Microsoft Corp.) » Atat: BASIC (Atari Inc.) « TI
Extended BASIC (Texas Instruments Inc.) « Cobol (Codasyl Inc.) » COMAL “.
(COMAL Users Group) + Forth (Forth Interest Group) « PC Forth (Forth In- - |
terest Group) « Fortrin (IBM Corp.) + HyperCard and HyperTalk (Apple Com- -
puter) + Termpin Logo (Krell Corp.) « RPG (IBM Corp.) » Smalltalk (Xerox' | -

* Corp.) « dBASEII (Ashton-Tate Inc.) « VisiCalc (VisiCorp) + SuperCalc
(Sorcim) » Muhiplan (Microzoft Corp.) ¢ Lotus 1-2-3 (Lotus Development
Corp.). Paradox (Ans, Borland) « Postscript (Adobe Systems) » Symphony
(Lotus Development Corp.) * Framework (Ashton-Tate Inc.) « UNIX (AT&T
Bell Laboratories) <« MS-DOS/MS-DOS 3.0 (Microsoft Corp.) » PC-DOS
(IBM Corp. and Microsoft Corp.) » Z-DOS (Microsoft Corp.) + Commodore
DOS (Commodore Computers Inc.) + Applesoft DOS 3.3 (Apple Computer
Inc.) » ProDOS (Apple Computer Inc.) » TRS-DOS (Tandy Corp. and Logical
Systems Inc.) « Macintosh Operating System (Apple Computer Inc.)

-)
2
Library of Congress Cataloging-in-Publication Data

McGraw-Hill personal computer programming encyclopedia

Bibliography: p

Includes index. -

1. Microcomputers—Programming. 2. Programming languages
(Electronic computers) 3. Operating systems (Computers)
L. Birnes, William J. II. McGraw-Hill Book Company.
QA76.6 M414 1989 005.26 88-8410

ISBN 0-07-005393-6
Copyright © 1989, 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America,
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher.

1234567890 DOC/DOC 8954321098
ISBN 0-07-005393-&

Jacket design by Edward J. Fox
Printed and bound by R. R. Donnelley and Sons

For more information about other McGraw-Hill materials, call 1-800-2-MCGRAW in the United States. In other
countries, call your nearest McGraw-Hill office.

Information contained in this work has been obtained by McGraw-Hill, Inc. from sources believed to be reliable.
However, neither McGraw-Hill nor its authors guarantees the accuracy or completeness of any information published
herein and neither McGraw-Hill nor its authors shall be responsible for any -errors, omissions, or damages arising out
of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying
information but are not attempting to render engineering or other professional services. If such services are required, the
assistance of an appropriate professional should be sought.

Contributors

Morgan Adair, Software Consultant, New York City

Jonathan Amsterdam, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology '

William Bailey, BASIS, Inc., Chatham, New Jersey

Scott Berfield, Parity Productions, Chicago, Illinois

Jeffrey D’Ambrosia, DHI Contracting, Greenbrook, New Jersey .
David Dameo. Software Consultant, Perth Amboy, ew Jersey

Brig Elliott, True BASIC Inc., Hanover, New Hampshtre

Ian Harac, Soﬁwaxe Consultam, Fords New Jersey

Bridgford Hunt, Soﬁware Consultant. Shelner Island, New York

Michael Iannone, Depanment of Mathematncs and Computer Science,
Trenton State College

Ann Joslin, Idaho State Library

Guy M. Kelly, Chairman of Forth Standards Team, Chairman San Diego
Chapter of the Forth Interest Group, La Jolla, California

Yong M. Lee, Department of Mat.hematlcs and Computer Science,
Trenton State College

Paul D. Lerhman, Musician and Software Consultant, Arlington,
Massachusetts

Robert Levine, UNYSIS, New York City

David Lewis, Department of Mathematics and Computer Science,
Trenton State College

Len Lindsay, COMAL Users Group USA, Ltd., Madison, Wisconsin

Lawrence Mahon, Software Consultant, Somerville, New Jersey

ix

Contributors

Gary Markman, BDI Systems, Pawling, New York

Norman Neff, Department of Mathematics anid Computer Science,
Trenton State College

Kari Nicholaé, Physical Acoustics Corporation, Princeton, New Jersey
Ross Overbeek, Argonne Nation@f’l.aboratories, Lisle, Illinois

P.). Plauger, Whitesmiths, Ltd., Westford, Massachusetts

Mark J. Robillard, Systems Consultant, Milford, New Hampshire

Al Rubottom, New Technica, Inc., San Diego, Califomia
Stephen E. Seadler, Uniconsult, New York City

Thomas Sheldon, Author and Consultant,‘Santa Barbara, California
Kern Sibbald, Auto CAD, Sari Francisco, Califomia

Ernest R. Tello, President, Integral Systems, Santa Cruz, California

Paul Thomas, Force Fiexd, San Francisco, California

Michael Tilson, Vice President, Human Computing Resources
Corporation, Toronto, Ontario

Charles R. Walther, President, New Century Educational
Corporation, Piscataway, New Jersey

Linda Weisner, Research Assistant, Department of English,
Trenton State College

Michael Wetmore, Chief of Engineering; Pierce-Phelps, Inc.,
Philadelphia, Pennsylvania

" Robert Wharton, Professor of Mathematics, Department of
Mathematics and Computer Science, Trenton State College

Roy Woodall, AT & T, Westem Electric, Piscataway, New Jersey
William P. Woodall, Software Specialists, Somerville, New Jersey'

PR

Preface to the Second Edition

The years since 1985, when the first edition of the Personal Computer Frogram-
ming Encyclopedia was published, have witnessed a second revolution in the field of
personal computing. The introduction of the IBM AT, shortly after the Encyclopedia
was completed, and the development of “386™ machines, 100-plus Mbyte hard drives,
WORM and DRAW CDROM technology, low-cost laser printers, desktop graphics
scanners, and the Macintosh II have effectively enclosed the computing power and
applications capability of a rcasonably sized mainframe within the deceptively small
box of a desktop personal computer. In addition, the release of inultitasking operating
systems tor both PC compatibles and Macintoshes and the development of reasonably
priced local area network packages for desktops have changed the personal computing
environment from the individual stand-alone workstation connected 1o a larger system
only by dedicated telephone lines toa truly integrated system. Finally, the development
of high-end graphics-based desktop publishing packages for professional and com-
mercial facilities and the introduction of desktop CAD stations based on Reduced
Instruction Set Computer chips have created entirely new industries in just thrée short
years,

This second edition of the now-standard Programiming Encyclopedia includes
new entries on these applications as well as entries for Apple’s HyperTalk language,

which is already revolutionizing the way personal computers are customized by even’

the most nontechnical of users; neural networks, the most daring and boldest attempt
yet to recreate a human reaction and learning system within the strict limitations of
binary logic; games and entertainment, and compuier-generated music. The
Encyclopedia has updated the core entry on BASIC by taking the programming
language back to its historic roots as a teaching language and examining the way it has
evolved. In addition, there are compleiely revised entries for Forth and for Pascal and
new entries for AWK, SNOBOL, and Paradox.

we have mainiained the {irst ediiion’s format of single-column entries for in-
troductory articles and applications and double-column entries for high-leve! language
glossaries, uperating systems, and assembly-language instruction sets. We have also
preserved the primary goal of the Encyclopedia from the first edition, which is to
provide a basic, single-volume, cross-indexed, desktop reference to the major personal
computer implementations of high-level programming language interpreters and
compilers, command language applications software, and operating systems. In its
revised and enlarged second edition, the Encyclopedia continues to be one of the single
most valuable reference tools for the entire spectrum of endusers, from programming
professionals to nontechnical hobbyists. '

xi

Preface to the First Edition

The concept of personal computing has its beginnings in the late 1970s with the
assembly of the first microcomputers based on the technology of the integrated circuit.
The initial commercial success of the microprocessor-driven units converged with the
ongoing development of high-level computer programming languages. The appear-
ance of these languages in the 1950s took programming, once a field open only to the
engineers and designers who had originally developed computers, out of the laboratory
and into the business marketplace. By the late 1960s there were a number of high-level
languages with applications in the sciences, engineering, business, and even elemen-
tary and secondary education. When the first BASIC interpreters were bundled with the
new “personal computer” packages in the 1970s, the two development streams were
officially joined, and the personal computer revolution began.

Over the next eight years, each success in personal computing technology
prompted a new surge of development. The machines themselves grew in power and
capability from 8-bit 8K PET computers with membrane-type keyboards and onboard
cassette recorders to the IBM PC-AT with its 20 Mbytes of hard-disk storage and true
16-bit speed. By the end of 1984, the LISA technology developed by Apple for its 32-
bit office machines was repackaged to appeal to a home market and quickly caught on
as the Macintosh. In alockstep with the development of new hardware systems was the
invention of new software systems and applications programs. The BASICs of the
1960s and 1970s gave birth to more powerful versions that had built-in graphics and
music commands and system utilities that allowed even novice programmers a
sophistication and efficiency of code that previously could only have been found in as-
sembly language routines. However, beyond BASIC, versions of Pascal, C, and Forth
were developed which put enormous programming power into the hands of personal
computer users and allowed them to emulate the processing capabilities of large
mainframes at their desktop terminals. And this is only the beginning. Languages such
as Ada, the Department of Defense’s new projected standard information-processing
language, and Prolog, which is at the center of artificial intelligence research and
development, have recently been implemented 0.1 personal computers and will become
more popular as succeeding generations of mor : powerful computers find their way
into the home and business markets.

This proliferation of computing language 1nplementations has created a serious
need fora single reference volume whichnotorly introduces the various languages and
indexes all of their command words and staiements, but provides for a cross-
referencing of applications and a comparison of tae languages’ capabilities. This is the
purpose of the Personal Computer Programming Encyclopedia. The Encyclopedia
illustrates the capabilities of each language with overviews of the language’s design
and architecture. By comparing the operational d fferences of each language through
sample programs, the Encyciopedia demonstra: 3s the different ways applications can
be addressed by programmers within the differert lan:suage environments.

The Encyclopedia is divided into two types o1 sections: the double-column
sections which cover the high-level lang uages, operating system commands, and
assernbiy-laiguage commands, and the siigle-column sections which contain back-
ground and introductory material. In the single-colun 1: sections, readers will find
articles which explain the architecture and Jesign of coriputer programs, examine the

user-oriente«l issues of software develoyment in busine i and education, and explore
. xiii

Preface to the First Edition

the newest areas of development in graphics, robotics, and artificial intelligence. In
choosing these different types of entries for the Encyclopedia, recognition has been
given to the major areas of personal computing that affect users: (1) the need to
understand the logic of program design; (2) the current trends-and issues in the most
important areas of software development; (3) the diversity of languages that are
available to personal computer users and the primary applications of these languages;
and (4) the relationship of hardware systems to software systems. The resultis a volume
thataddresses the needs of the eatire personal computing community from the business
user and consumer of professional software products to the home user learning about
atype of information technology that promises to transform the ways people organize
their lives.

The Encyclopedia provides background histories of the high-level programming
languages, operating systems, and applications software cited. It relates the develop-
ment of these various software tools to the current computing environment as well as
to the historical period during which the software was originated and marketed. The
result of this approach is a social history of personal computing in which programmers,
personal computer users, and general readers will discover the underlying reasons for
must of the product development in the marketplace. The Encyclopedia explains the
different trends in languages, operating systems, and applications software over the
past five to ten years, and the effects of these products on users in different professional
fields.

The Encyclopedia contains an index to all of the keywords and statements in the
high-level languages that are cited. This index is an important reference tool for
programmers and serious users because it provides an immediate cross-reference
between the different languages. Programmers seeking to translate source code from
one compiler to another, ar from one dialect of BASIC to COMAL, or to structured
BASIC will find the cross-index a handy tool. General readers interested in the history
and intellectual backgrounds of programming languages will find in the cross-index of
high-level language keywords a generic approach to the types of commands that are
used in programming. Teachers will also find this system a valuable reference tool for

use in comparative programming. -

The Encyclopedia also examines the different corporate cultures from which the
most popular types of personal computers have evolved and evaluates the dynamic
relationships between manufacturer and the manufacturer’s product history, the hard-
ware system and supporting software, and the user market the computer was targeted
to reach. Readers will find an- interesting perspective on the current trends of
technological development in the areas of hardware, software, and operating environ-
menis. There is a capsule summary of the history of personal computers from the first
attempts to market basic user-assembled kits to the 32-bit supermicros that will be
making their appearance within the next several years. Their history, brief as it is, will
provide a needed background to the dynamic microcomputer marketplace and the
different products that are announced in the computer magazines and newspapers.

Preface to the First Edition

The articles in the Personal Computer Programming Encyclopedia are written
by individuals from a variety of backgrounds. This diversity of opinions is reflected in
the different levels of emphasis within the entries and the broad perspective of the
volume in general. In short, the Encyclopedia embraces the types of related informa-
tional materials that spread across the traditional boundaries often found in a reference
book on science and technology. This is what makes the volume an innovative

- reference tool.

While a number of computer dictionaries and comparative reference books on
programming languages have appeared recently, the. McGraw-Hill Personal Com-
puter Programming Encyclopedia is the only single-volume reference to provide a
comprehensive introduction to the entire personal computing environment both as a
science and as a commercial industry. Thus, it will become a valuable reference both
for the computer professional and for the novice. Business users, studeats, teachers,
hobbyists, and home users will find the Encyclopedia a most useful desktop computer
reference.

William J. Birnes
Editor

Xxv

*u

CONTENTS

1
Program Design and Architecture 1
2
Principles of Effective Programming 17
3
Special Applications Software 31
Integrated Software 35
Local Area Networks from a User’s Perspective 41
Educational Computing and Computer Programming 49
Educational Computing Facilities Today - 57
Microcomputers in Libraries 67
Microcomputer Graphics 77
Electronic and Desktop Publishing 93
Computer-Aided Design/Drafting on Personal Computers 9
Games and Entertainment 109
Microcomputer Applications in Music 119
Artificial Intelligence and Expert Systems 135
Neural Networks 163
Robotics 169
4
Microprocessor Basics 185
Directory of Microprocessors 201
Intel 8080A 203
Intel 8085A 206
Zilog Z80 207
National Semiconductor NSC800 210
Motorola MC6800 214
Motorola MC6809 217
MOS Technology 6502 , 219
Texas Instruments TMS9900 221
Intel 8088 224
Intel 8086 229
Intel 80286 231
Intel 80386 232
8087, 80287, 80387 234
Zilog Z8000 236
Zilog 78002 245
Motorola 68000 247
254

The Supermicros

CONTENTS

5

. High-Level Programming Languages

Software Command Languages

vi

Ada

Algol

APL

AWK

BASIC

MBASIC 86
ZBASIC
Compiled BASIC
S-BASIC
Applesoft BASIC
Atari BASIC
TI Extended BASIC
G Language -
COBOL
COMAL

Forth

PC Forth

Fortran

LISP

Logo

Modula-2

Pascal

Pilot

PL/I

Prolog

RPG

Smalltalk
SNOBOL

Paradox
dBASE I
VisiCalc
SuperCalc
MultiPlan
Lotus 1-2-3
Symphony
Framework
HyperCard

257
265
273
21

. 284

290
321
327
334
338
343
345
346
350
357
363
368
385
396
401
407
412
417
427
431
437
442
452
462

469
471
480

492

496
499
502
506
507
514

Operating Systems Directory

UNIX

MS-DOS

PC-DOS
Commodore DOS
Operating System 2
XENIX

CPM

Applesoft DOS 3.3
ProDOS

TRS-DOS
TRS-DOS 6.0
Macintosh Operating System

7

Micmcompu’tér Systems Hardware

8

Major PC Products: Markets and Specifications

Glossary of Computing and Programmirig Terminology

TRS-80 Models I and I1I

TRS-80 Models IT and 12

TRS-80 Model 4

CP/M Computers

IBM PC and Compatibles
Commodore PET/PET 2001/CBM,
Commodore VIC-20 and C64
TRS-80 Color Computer

Apple I Family

Apple Macintosh

Bibliography

Index

Index

of High-Level Language Keywords

CONTENTS

525
528
536
539
541
542
550
553
556
558
560
563
567

n
3
-3

SHEH

610
611
612
613
615
695

707

PROGRAM DESIGN
AND ARCHITECTURE

.

As in most creative work, the fundamental aspect of writing good applications
and systems programs lies in the preliminary design and architecture. Itis on this level
that some of the most important thinking takes place. Goals are defined, pathways are
mapped out, logical relationships between data types are developed, and the rules that
will govern the decisions the machine will make are stipulated. It is here, at the very
heart of a well-designed program, that a definition of truth is implemented, and the
execution of this program, the processing of line after line of code, is a test for that truth.
And as a statement of truth and a test for that truth’s existence in the data that flows
through it, the computer program takes its place right alongside literature and artas a
form of creative expression, There is a practical creativity, to be sure, but a computer
program is no less creative and structured in its disciplined expression of truth than a
line of poetry by Keats, a portrait by Albrecht Diirer, or a Bach concerto.

What takes place in the design and architecture of a computer program? On the
most obvious and visible level, it is a patient sequence of logic that expresses the
complexity of human thought in terms of an organized pattern of connected decisions
to be implemented ultimately as a series of electronic pulses. On an even more
fundamental level, it is nothing less than the definition of the reality that the computer
will understand as its truth. The design of a computer program, therefore, is a
microcosm of the physical universe, and as an amalgamation of artistic creativity and
technical precision, it is the marriage of C. P. Snow’s “Two Cultures.”

Designing a computer program is analogous to designing a building: the
programmer must create a structure performing various functions in an efficient,
pleasing manner. Frequently program design is also referred to as program architec-
ture, and with good reason:; the designer of a program must usually take a multidisci-
plinary approach to the task. While the knowledge required for the successful design
of a particular program (or system, within this context) depends in a good measure on
the task to be performed, at a minimum a good understanding of logic, language, and
computer fundamentals is prerequisite. More commonly, the designer must also know
a goodly amount about the particular objective that the program is to solve, and also
about seemingly esoteric subjects including psychology. Programming a computer is
an exercise in abstract thinking; unlike many other jobs, with a computer the only
tangible results are points of light on a screen, marks on paper, or other effects that are
the result of the process. In this respect, programming a computer can be considered
an art form, since only the final effort will ever be seen, and only rarely will the com-

ponent parts ever be viewed.

Rl

2

Program Design |

How important is good design in a program? As in constructing a building, a
quick on-the-fly job may suffice for the moment, and might just last for futa.
generations. More likely, it will collapse in the first big storm to come along, which in
the programming world is the first moment a user requests a noticeable change in how
the program works. Just as the overwhelming majority of buildings benefit from the
services of an architect, so too do most programs from a designer.

'The various skills of a program designer are an amalgamation of learned and
experienced techniques. At the forefront of a designer’s skills is that of communica-
tions: to be able to communicate both with the programmer(s) who will write the actual
program and with the users of the program. Knowledge of a computer programming
language is decidedly secondary. Logic is needed to handle the precise, unswerving
manner in which a computer persistently executes only the instructions defined for it.
A basic awarcness of the rudiments of computer operation is of aid in handling the logic
flow, and the data structures of a program. And for those programs which interact
directly with the user, through keyboard and display, or other interactive media, some
knowledge of psychology may be needed to enhance the computer’s communications
with humans. System design and analysis courses have been a stapie of computer
science curricula from the beginning, from graduate degree programs right down to
trade schools and high schools.

The choice of the actual programming language and the subsequent coding of the
program, while important, take place after the logic of the program has been designed.

.- Programming languages by themselves are only forms of machine code generators. By

definition, they are a source of code that is either compiled or interpreted by the
machine and translated into the sets of instructions that the machine can process. As a
source of code, they help the programmer implement a coherent and executable logical
design and serve as a matrix for the actual commands. In addition, high-level
computing languages provide for the definition of the types of data and, in some cases,
particularty COBOL, the specific machine environments. But, while an indicator of
program efficiency, the programming language is not, and should not be considered,
the ultimate indicator of quality. The best programs are good, not because they are
written in C rather than BASIC, or in LISP rather than Pascal, but because they are
designed from concept through code to be disciplined and creative tests for validity and
truth.

As an implementation of a logical structure, the original programming environ-
ments in the early days of digital computing were required to be designed efficiently
and completely because they were written on a machine level which was unforgiving
of mistakes. High-leve! languages, which were developed later, were oriented more
toward the natural language of speakers than they were toward the opening and closing
of electronic circuits. High-level languages addressed compilers and interpreters
which in turn generated the machine code. As aresult, high-level languages often have
built-in mechanisms which, though quick to trap errors in the usage and syntax of
source code, can sometimes be quite forgiving of fundamental mistakes in design and
logic. And it is these hidden structural mistakes which ultimately surface in the
program’s execution to make debugging the program a seemingly impossible task.
Therefore, all professional computing training curricula, whether on a secondary
school, college, or vocational level, usually begin with a unit on program design and
architecture.

But program design and architecture begin with an understanding of common-
sense sequential logic. In other words, to design a program, an individual need not have
the actual high-level language code at his or her fingertips; rather the person must
understand fundamentally how the computer of choice will operate and how to define
logically the complcte task of the program from beginning to end. It is this task
definition and the realistic design of an operation from beginning to end that is
necessary in order to write a good program, Whether the task is designing an operating
system or writing a program to calculate the principal and interest payments on a loan,
the programmer begins with a list of items the program must accomplish and ends with

Program Design 3

a chart showing the order in which the program will do just that. This section will
introduce you to the elements of programming design and architecture from a
programmer’s point of view and will look at the elements of goal-setting, evaluating
the programminig tools to be used, and the construction of a programming structure.

Principies of Program Design

In principle, designing a program is not different from approaching any other
task. We require a goal that is clearly defined because we need to know what we want
to accomplish, we require an understanding of our beginning resources, and we must
have a thorough understanding of the means we will use to reach the goal. As an
example, consider the act-of going to work in the morning. The goal is to get to work.
The beginning resource is your home. The means to reach the goal is some form of
transportation. The only difference between this process and the process of writing a

GOAL BEGINNING MEANS

TO DESIGN CLIENT
A USES A MY
BILLING MANUAL COMPUTER
SYSTEM SYSTEM

Fig. I-1

computer program is that there’s no need to make any part of the task of getting to work
inthe morning a conscious, consistent, and repetitive test for truth every day. However,
how would these actions appear without a goal? Your normal activities such as waking
up at 6:30, getting dressed in work attire, going to the train station, and so on, would
seem silly indeed if you performed them on a Sunday merning or a holiday. The point
isthat most of the things we do need a goal in order for the actions to have any meaning.
Designing a program is no exception.

ProbaBly the least practical way to begin writing a computer program is to sit
down at your computer and start writing code. Many begirning programmers, eager to

GOAL BEGINNING MEANS

TO DESIGN CLIENTS |& BASIC
THE OUTPUT PRESENT (10 BE

FORMAT OF BILL '
THE BILL FORMAT COMPILED)

Fig. 1-2
see results, will do just that. The result is usually very awkward and inefficient code,
poor documentation, and an absolute nightmare when debugging time comes (and it
always does).

The three steps named above——goal, beginning resources, and means—are
essential in the design of a good program. And the first language any beginning
programmer should consider using is not BASIC, Fortran, Pascal, or COBOL, but
rather English. Specifically, the way to begin writing a program is to identify in
commc anguage the goals, the beginning, and the means. Typically, the programmer
will be working on part of an overall system which has been defined. However, for
purposes of this example, consider that the programmer is also responsible for
designing the system. Let’s say that the task is to design part of a billing system for a
client. If the design steps were identified as in Fig. 1-1, the programmer would have
virtually no useful information with which to begin. It would be like the going-to-work

N

4

Program Design

analogy without knowing where you worked. The goal, beginning, and means must be
identified as specifically as possible. For example, in Fig. 1-2, the goal is specific, the

. beginning is defined, and the means (in this case the programming language) is

specified. It is also important for the programmer to know that the BASIC to be used
will be compiled, since compiled BASIC runs much faster than interpreted BASIC.:
This knowledge could influence the programmer’s decision on designing the program
since speed of execution would become a less important factor. The steps the program-
mer would take are:

1. Define the goal by designing the actual appearance of the bill.
2. Examine the input that this section of the program will receive.
3. Decide how to operate on that input by formatting the output in a

programming language.

Steps to Design

Atthe outset, it’s important that the computer architect know as much as possible
about the task to be solved, and the conditions under which it must be solved. Just as
the conventional architect must know the prime function of a building, so must the
designer know the major function of his or her program. And while the building ar-
chitect worries about the placement of a structure within an environment perhaps
already shared by othcr buildings, and the limitation of cost and building materials and
labor availability, so must the program designer. Only the names and physical nature
of the tools and end products differentiate the two.

The logical place to start is with a definition of program goals. A program may
have a single goal, such as ejecting paper from a printer, or printing a payroll check,
or multiple goals, such as the complete supervision of a warehouse from receiving of
component parts through the shipping of completed manufactured goodsto acustomer.

Goals are generally defined by the user of the information or service to be
produced by the program. The user may or may not be the actual operator of the pro-
gram; many programs execute unseen (especially those that make up a computer’s
operating system). Goals of a program may be stated in various ways, and they are often
ambiguous. An initial goal of the designer, then, is to clarify the objective of the
program to a coherent truth. A designer must also be prepared to accept that the final
defined goal of a program may bear little if any resemblance to its initial presentation.
And many programs must solve multiple problems, usually in a prioritized fashion.

After the basic objectives of a program are defined, the designer begins to deal
with the computer environment. Foremost at this stage is to develop a schema for data
representation. Since practically all useful programs manipulate data at some level, a
coherent, flexible design of data representation is crucial to the long-term success of
a program. The delineation of data within the computer environment may little
resemble conventional human organization of information.

For example, within a typical business, the name and address of a particular
customer will be duplicated on virtually every piece of paper relating to that customer,
be it order, invoice, packing slip, or statement. The computer probably contains but a
single occurrence of this information, but, through the computer’s ability to cross-
reference data, the name and address of the customer is available to any module within
the system that requires it. In another case, where a long list of yes-no answers to
questions is desired, the computer representation may be but a single binary digit for
each of the answers. The data design for a program may be a simple list of terms, ora
multifile interlinked database system. But the basic goal of a robust and logical design
remains the same in cither extreme. Of course, if the program is expected to be
abandoned at a known point in the future, then perhaps this goal may be modified. But
designers should also de somewhat wary ¢f such predictions, and geicrally sirive for
the best possible design. If the data structures are too cumbersome, at some point the
system must be torn down and rebuilt. It is possible for a design to be both flexible and

_ complex at the same time; an examination of the histories of some mass-market utility
software will show this to be true.

In developing a data representation, the designer should know both the source
and the destination of data manipulated by the program, and, potentially, other uses of
the data. The source of information may influence data representation, most especially
in the case of machine-specific functions, such as display control, and destination of
the information, as in printer control, may also influence the design. Additional
considerations will be security of information, both from prying eyes and from operator
and/or system error.

. : Alsoaroundthe stage of data design, the choice of programming language begins

to become relevant. While the best approach is to choose a language based on its
inherent strengths to solve a particular task, most designers will be constrained to a
choice of language based on a more mundane reason: availability. Nevertheless, the
programming language(s) to be used will impact on data representation, as cach
programming language has its own quirks as to what is allowable. But there is a
generally available common subset of data types available to all languages—character,
data, and numbers.

The choice of programming language, however, is not so intensely crucial. Many
tasks can be solved in any language, although the level of effort required to solve the
task may vary widely.

The particular language or mix of languages used to solve a specific task is not
alegitimate guide to the quality of the solution; more, itis a guide to what was available
atthattime and place. In many cases, familiarity with the quirks of a particular language
may cause it to be chosen over some more “suitable” language. Academics may find
cause to arguc over the merits of one language to another, but with the continuing
evolution of computers, over time, many of the wide variations in the problem-solving
capabilities of languages are shrinking. Still, most languages are identifigd, rightly or
wrongly, with strengths in particular areas. Fortran and PL/I are the major choices of
scientific-engineering projects, with rich mathematical abstractions available. CO-
BOL enjoys areputation of rich data structures, easy readability by nonprogrammers,
and wide acceptance in business applications programming. C is the choice for
portability, and Pascal has its own body of adherents. BASIC is the most widely
installed language, although it suffers from a lack of standards. Assembly language, the
native language of a specific computer, is still the vehicle of choice for small, extremely
fast programming. And other languages, with some proprietary to a particular environ-
ment, others perhaps lacking academic or industry support, exist for solving various
disparate situations. ,

Once a conceptualization of datarepresentation has been mace, but perhaps prior
tothe choice of aprogramming language, the designer must seriously consider the flow
of information through the program.

Obviously the program must perform whatever manipulation is needed to meet
its objectives. Also, the design should take into account error conditions, whether
caused bf invalid data, operator error, or machine error. A program which dies due to
simple operator error, such as a printer running out of paper, definitely missed
something at the design stage. The designer should anticipate every possible sort of
data corruption, and place safeguards against it where practicable.

Varioustoolsexistto assist the designer at this stage. Perhaps the most ubiquitous
is the flowchart, a stylized schematic diagram of program control. In its purest state,
the flowchart is drawn with a template, using special symbols to denote certain precise
forms of activity. A decision is represented with a diamond, a process or calculation
with a rectangle, a sort/merge operation with a triangle. Arrows direct the flow of
information through the flowchart.

Logic of the Flowchart
In the course of structuring the logic and the flow of control within the actual
program, the most important tool is the formal flowchart. A flowchart is a diagram

Program Design

5

