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““The senses, the mind and the intelligence are the breeding grounds of
desire and lust; they veil the real knowledge of the living entity and bewilder the
embodied soul’’ .
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‘“The active senses are superior to the passive matter; mind is higher than
the senses; intelligence is still superior than the mind, but the soul is the most
superior’’ . ‘‘Bhagavad-Gita”’
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FOREWORD

Life is full of uncertainties and the information and data which are associated with
our professional and private activities are often more vague and possibilistic than random
and probabilistic. Many of our activities and the systems with which we deal cannot be
modelled easily, therefore, with any degree of accuracy using conventional techniques.
New tools are required for this purpose and Professor Lofti A. Zadeh, while not neces-
sarily the first to recognize this need, was the first to introduce such mathematical tools
based upon fuzzy set theory and fuzzy logic. He did this in 1965 and since that time
there has been an exponential growth in this field with applications in engineering and in
the management and social sciences.

Professor A. Kaufmann and Professor M.M. Gupta are two of the leading research-
ers in this field and they are certainly amongst its greatest proponents. This text is the
latest in their very substantial contributions to this field. It deals with the notions of
fuzzy numbers with levels of perception and levels of presumption. It also provides
many interesting and useful examples of applications in engineering and management
science. Of particular interest, are their discussions of applications in areas employing
zero-based budgeting, the Delphi method, critical path optimization, reliability model-
ling, filtering and transportation.

Readers will find this book not only interesting, but easily understood. As one of the
recent converts to this field, I highly recommend it to all of those who work with data
which are somewhat "fuzzy".

April, 1988 Peter N. Nikiforuk
Dean of Engineering
University of Saskatchewan

Saskatoon, Saskatchewan
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PREFACE

The universe, as described by the mathematical sciences, is not one that is closed.
Each day brings innovative directions in theory and applications. Mathematics, the
queen of all sciences, is also the most generous in novel theories and applications, the
recent theory of fuzzy sets being a good example of this generosity. In one of our recent
books, ‘‘Introduction to Fuzzy Arithmetic, Theory and Applications’’ (Van Nostrand,
Reinhold, 1985), we discussed the state-of-knowledge of fuzzy numbers, and fuzzy sets
on the real line. We also presented much new work in this book, but since its completion
we have realized the need for an additional book in this field due to the many interesting
developments, both in theory and mathematical modelling, that have appeared. Many of
these developments are described in the present book.

We designed the first book as a text book for students, for researchers by giving
many new results and research ideas, and for practitioners by giving examples of applica-
tions. The present volume on ‘‘Fuzzy Mathematical Models in Engineering and
Management Science’’ reflects the same objectives. It presents many new results, exam-
ples and novel applications. This approach, in our opinion, makes the book interesting,
easy to understand and has immense pedagogical value.

Fuzzy arithmetic is not difficult to learn; firstly because it is only an extension of
ordinary arithmetic and secondly, because the ‘‘fuzzification’’ is a phenomenon that is
natural and inherent in the human thinking and cognitive processes. In human sciences,
data and processes may or may not be vague, may or may not be measureable, may be
subjective or objective. However, when a mathematical model is used in decision mak-
ing processes its validity must be questioned, especially if the actual model must be
reduced to one that is deterministic even when the environment is fuzzy. If our
knowledge of the environment is imprecise, as happens in medical diagnosis, engmeer-
ing, management decision making, etc, the model must include the notion of the level of
presumption. Fuzzy numbers have been created to reflect the vagueness of human per-
ception and thus the notion of the level of presumption. These fuzzy numbers thus reflect
the human cognitive process.

This book deals with the theory of fuzzy mathematical models with applications in
engineering and management science. Part I, which contains ten chapters, is devoted to
the theoretical basis for these mathematical models. Part II, which contains eleven
chapters, is devoted to a variety of applications in engineering and management science.
There are also seven appendices which contain some special mathematical operations
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(Minkowaski’s operations) on fuzzy quantities and detailed biographical material.

The first part of the book is devoted to theoretical considerations which lay the
foundations for fuzzy mathematical modelling. We briefly introduce the theory of fuzzy
sets and fuzzy numbers in Chapters 2 and 3, but a more extensive discussion may be
found in our other book on fuzzy arithmetic. Fuzzy numbers are a special kind of fuzzy
sets which are normal and convex. Although these numbers can be described using many
types of shapes, for practical applications it is best to use triangular and trapezoidal
shapes to describe valuation data with certain levels of presumption.

When using fuzzy numbers, 1t is necessary to determine their order (ranking). The
problem of linear ordering is discussed in Chapter 4. The imprecision or vagueness asso-
ciated with a fuzzy number is an important piece of information and it is discussed in
Chapter 5. In Chapter 6 we give particular attention to triangular fuzzy numbers
(T.F.N.’s) and their use in the approximation of several functions of triangular fuzzy
numbers. In fuzzy mathematical modelling, we often encounter the deconvolution (solu-
tion) of the equations of the type A (+) B=C, and A (-) B = C, with given A and C, and
unknown B. This subject is discussed extensively in Chapter 7. T-norms and T-
conorms; that is, operators for fuzzy variables which belong to [0, 1], and their respective
attributes, are studied in Chapter 8. A fuzzy number in [0, 1] is a special kind of fuzzy
set which can be used in modelling knowledge and is discussed in Chapter 9. We give a
detailed discussion of fuzzy numbers in [0, 1] with higher order interval of confidence in
Chapter 10. We also discuss in this chapter the solution of simultaneous equations with
equalities and inequalities. This first part of the volume, thus, lays the basic fuzzy
mathematical background essential to the modelling of systems with fuzzy (soft) data.

The second part of this volume is devoted to some very important applications of
fuzzy set theory in engineering and management science. The first application, given in
Chapter 12, is taken from a model in management science which traditionally assumes a
model with either deterministic or probabilistic variables. In this chapter, we show how
to treat a zero-base budgeting (Z.B.B.) model using triangular fuzzy number. A consid-
erable amount of criticism has been made of the zero-base budgeting method because it
conventionally uses the deterministic approach. The approach presented in this volume,
however, utilizes fuzzy data, and this fuzzy modelling of the problem seems to be more
realistic. We apply the same treatment to the Delphi technique and develop a fuzzy Del-
phi approach in Chapter 13. As is well known, the classical Delphi approach has been
used with a large success by corporation such as Rand Corporation and the approach
presented here makes use of triangular fuzzy numbers. This variation to the classical
Delphi approach may prove to be more powerful in that it can make use of realistic data
which are vague in nature.

Discounting with fuzzy numbers and fuzzy smoothing problems are illustrated using
several examples in Chapters 14 and 15 respectively. Chapter 16 deals with the impor-
tant topic of reliability which conventionally utilizes a probabilistic approach. This
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problem deserves deep study and wide explanation since a large scale system is usually
composed of many components and/or sub-systems with non-objective survival curves
rather than objective ones. We use intervals of confidence in the evaluation of reliability
of systems and give a possibility theory for the study of reliability models.

Among many other indicators for economical choices, cost efficiency quotients are
very useful. In Chapter 17 we show how to utilize this criterion when data are not very
well known or not well defined. When criticial path methods (C.P.M.) are used, litiga-
tion between experts is not rare and we show in Chapter 18 how to make a convenient
aggregation using experts’ subjective opinions. In Chapter 19 we discuss the problem of
investment with fuzzy data. Of course, we did not forget the application of the dynamic
programming method developed by Richard Bellman, the co-developer of fuzzy
mathematics. The dynamic programming method with fuzzy data can be applied to vari-
ous problem situations. We also give some classical but illustrative examples of this
method. Finally, in Chapter 20 we show how to solve a well known problem in transpor-
tation using the fuzzy stepping-stone method when the unitary costs are not precise.

In this part of the book we limit our studies to building models using fuzzy data. In
fact, the use of fuzzy numbers is not limited to only engineering and management sci-
ence. Fuzzy mathematics concerns all domains of human sciences and also even the so-
called “‘exact sciences’” when the information may be exact but not necessarily precise.
Chapter 21 presents a general view of fuzzification of models in engineering and
management science.

Some important information is provided in the appendices. Appendix A deals with
the properties of triangular and trapezoidal fuzzy numbers and Appendix B gives the
details of Minkowski’s operations on ordinary subsets. These operations have e iensive
applications in the morphological description of signals and images. We define fuzzy
quantities in Appendix C, and give the theory of Minkowski’s operations on fuzzy quan-
tities in Appendix D. These operations may find applications in the manipulation of such
data as gray-level and coloured images and cognitive information arising in decision
making processes. Finally, we give an extensive list of selected books, and some major
current bibliographical sources on fuzzy sets and systems.

This book thus presents many new theoretical developments and innovative applica-
tions. It provides useful mathematical tools to our readers which they may find useful in
the study of their own problems. Hopefully, the readers will contribute to this new field
of applied mathematics by their own research and will generate new applications in the
fields dealing with soft data.

April, 1988 Arnold Kaufmann
Madan M, Gupta
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