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PREFACE

more than 75 percent of business application programs still being

written in COBOL. COBOL does not, however, stand still, but con-
tinues to develop in light of experience and advances in programming the-
ory. COBOL 85 compilers are now commonplace on both mainframes and
microcomputers. While this book teaches COBOL 85 (COBOL 85 facilities
are clearly marked throughout the book), it also provides a complete pre-
sentation of COBOL 74.

The major theme of Comprehensive Structured COBOL is that learning
COBOL and the ideas associated with it should be both challenging and
interesting. Comprehensive Structured COBOL emphasizes understanding
COBOL and programming concepts as the key to becoming a successful
COBOL programmer. Thus, the amount of explanatory material in the text
is greater than would normally be expected, and many examples are given
to strengthen the concepts and techniques presented. The student is taught
to understand, in a commonsense manner, the “why” of COBOL concepts
and programming techniques.

Explanations and analogies used in the book have been verified for
complete accuracy. Having been an instructor in computer programming
for more than 15 years and having been involved in computer-related
research and commercial programming for some 20 years, I have experi-
enced the ideas inherent in COBOL 85 from many different viewpoints.

This book was written with the goal of making it easy to read and
understand and with the hope that the ideas will leap off the page at you.
I have been encouraged by reviewers who are of the opinion that this writ-
ing goal has been successfully met. However, Comprehensive Structured
COBOL does not neglect detail. The book includes a level of COBOL detail
that should make learning COBOL an achievable goal of every student.

C OBOL REMAINS A MOST important programming language, with



In addition to the movement from COBOL 74 to COBOL 85, exciting
as that is, another transition is taking place. Computer file processing, the
original domain of COBOL applications programming, is moving to rela-
tional data base processing using COBOL with embedded SQL.

Every student of COBOL must learn the difference between file pro-
cessing and relational data base processing and must develop the ability to
write COBOL/SQL programs for processing relational data bases. Relational
data base systems that can interface with COBOL are now commonly avail-
able, and systems for use with supermini computers and workstations can
be purchased at a nominal cost. For example, at the University of Calgary,
where the relational system ORACLE runs on supermini computers, work-
stations, and personal computers, the mainstream COBOL 85 course
includes assignments on the use of COBOL with SQL for data base process-
ing. That relational data base processing using COBOL with embedded SQL
will become a strong component of COBOL courses in the 1990s seems
clear, and Comprehensive Structured COBOL contains the hecessary
COBOL/SQL material.

Organization and presentation

The book is organized into three sections:

1. COBOL Foundations

The first section deals with the foundations of COBOL and presents
the divisions of COBOL programs, as well as the use of IF-statements and
looping with the PERFORM verb. The first chapter assumes that the student
has no prior programming experience and explains computer processing
and elementary data processing concepts, together with elementary
COBOL programming concepts. The student with programming experience
can begin either in Chapter 1 with COBOL programming concepts or with
Chapter 2.

Chapters 2 through 4 explain the common considerations in writing
the four divisions of a COBOL program. In addition, Chapter 4, which deals
with the PROCEDURE DIVISION, details the use of the common COBOL
verbs. Many program examples are used throughout these three chapters to
illustrate the concepts and COBOL constructs presented.

The IF-statement and the new EVALUATE statement are given an
entire chapter (Chapter 5), with particular attention paid to understanding
conditions, both simple and compound, and to nested IF-statements. Chap-
ter 6 is devoted to looping, including nested loops, using the PERFORM . . .
UNTIL and PERFORM . .. TIMES verbs. Structured programming is used
throughout the first section, and principles are explained gradually at
appropriate points in the text.

I1. COBOL Processing Methods

The second section is devoted to COBOL programming methods. I
believe that the order chosen is the best one, although it could easily vary
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according to the wishes of the instructor or experiences of the students. The
section begins with a chapter on printing simple reports, followed by a
chapter on validation of input data. Then comes a chapter on the COBOL
SORT verb as a preliminary to the next chapter, which presents the all-
important topic of control-break processing for generating more complex
reports. The final two chapters of the section cover programming tech-
niques for single- and multiple-level arrays.

With the possible exception of the use of the Report Writer (in Chap-
ter 20 in the third section), material presented in the first two sections is
generally covered in many extensive one-semester introductory COBOL
courses.

I1I. COBOL for File and Data Base Processing

The final section teaches file and data base processing using COBOL.
Chapter 13 covers sequential file processing and file updating techniques in
detail; Chapter 14 details indexed sequential files. VSAM is used in
programming examples, although provision is made for the use of 1SAM.
Coverage of secondary key processing is also included. The elements of
relative files are covered in Chapter 15. Students are taught the three differ-
ent types of relative files, including hash files, that can be used. Coverage of
the concept of hash files extends as far as chained progressive overflow for
handling collisions. Full coverage of hash files with chained progressive
overflow will be included in a forthcoming advanced COBOL book.

Relational data bases and SQL are covered in Chapters 16 and 17.
Chapter 16 covers essential relational data base and SQL concepts, and
Chapter 17 shows how COBOL and SQL together can be used to process a
relation (or “file”) in a relational data base.

Chapter 18 covers on-line processing using COBOL and CICS. Many
instructors include CICS in a COBOL course because of its importance in
business programming. The chapter material is sufficient for an explana-
tion of the basic concepts involved and for some introductory
COBOL/CICS programming. However, if you intend doing extensive CICS
programming, you will need a supplementary CICS text. »

Chapter 19 covers some remaining peripheral topics, including CALL
and COPY statements, the USAGE clause, and STRING and UNSTRING
statements. Chapter 20 covers the use of the COBOL Report Writer feature.
The chapter includes basic Report Writer concepts and instructions for
generating reports using programs that utilize this feature.

Supplementary material

An effective course is dependent on a team effort involving the instructor
and students, as well as the teaching and learning materials they both share.
The complexities of teaching COBOL to a varied student audience gives rise
to the need for a truly useful instructional support package to assist the pro-
cess. For this reason, I have spent considerable time talking to COBOL
instructors about their course needs to determine what combination: of
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teaching materials would be most useful. With these conversations as a
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