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Preface

This book has arisen from my experience as a teacher and consultant in
mechanical vibrations. It is intended for senior undergraduates in mech-
anical engineering and the applied sciences and for postgraduates who are
concerned with vibration problems. It is also designed to be a practical
handbook for those who need to carry out vibration calculations; I hope
that it will be useful for many engineers in industry.

Mechanical Vibration Analysis and Computation is a companion for my
other book Random Vibrations and Spectral Analysis (second edition,
Longman, 1984). Although each can be read separately, the two books go
together and, where appropriate, topics in this book are cross-referenced
to those in Random Vibrations. Taken together, the two books cover the
whole field of mechanical vibration analysis, including random and non-
linear vibrations and digital data analysis. Although the subject is a
mathematical one, and in this new book there is a considerable amount of
matrix analysis, I have tried to keep the mathematics as simple as possible;
the emphasis is on practical applications of the theory in computation,
rather than on rigorous proofs of theoretical results.

Although most readers will probably have had some preliminary intro-
duction to vibration analysis, the basic ideas of single degree-of-freedom
vibration theory are reviewed in Chapter 1. This is followed, in Chapter 2,
by a detailed study of the frequency response of linear systems. The
emphasis is on the interpretation of a system’s frequency response in terms
of its eigenvalues. In Chapter 3 more general response properties are
considered, including alternative measures of damping, and the time for
resonant oscillations to build up. These three chapters serve as a back-
ground for Chapter 4 which introduces the main ideas of matrix analysis,
including the expression of a general linear vibration problem in terms of a
set of first-order differential equations. This transformation is necessary in
order to use modern computational methods which are organized for sets
of first-order equations.

The physical interpretation of natural frequencies and mode shapes is
discussed at length in Chapter 5 which includes applications to three major
practical problems: the bending vibrations of self-supporting chimneys and



xii Preface

masts, the torsional vibrations of a diesel-electric generator system, and the
hunting oscillations of a railway vehicle. The general theory of linear
vibration is usually developed on the assumption that the eigenvalues of
the vibrating system are all different. Sometimes this assumption is not
valid, and then there may no longer be a full set of independent modes.
Such problems are considered in Chapter 6, and the analysis is illustrated
by a torsional vibration problem which has three zero eigenvalues.

Most practical problems of vibration analysis require the application of
computer routines to extract eigenvalues and eigenvectors, and Chapter 7
is about how these programs work. The numerical procedures for comput-
ing the eigenvalues of a real, unsymmetric matrix by the QR method are
explained in detail and corresponding logical flow diagrams are given in
the appendices. Although many workers will use library programs for
vibration analysis, it is helpful to know how these programs operate and
what their shortcomings are. These matters are discussed in detail in
Chapter 7. The accompanying flow diagrams will allow those readers who
wish to prepare their own programs to do so in whatever language is most
convenient.

Chapters 8, 9 and 10 are about methods of numerical calculation for the
vibration response of large linear systems. In Chapter 8, the frequency-
response function matrix and impulse-response function matrix are express-
ed in general form in terms of the mass, stiffness and damping matrices. In
Chapter 9 these functions are used to generate general input-output
relations for a multi-degree-of-freedom linear system. In Chapter 10
methods of discrete calculation are described, including discrete calcula-
tions in both the frequency domain and the time domain, discrete
finite-difference calculations, and response calculations by numerical in-
tegration. The numerical integration section deals with the fourth-order
Runge-Kutta method, and a logical flow diagram for one integration step
is given in Appendix 7.

When the mass and stiffness matrices of an undamped system are
symmetric matrices, the general frequency-response and impulse-response
equations are simplified. Chapter 11 is a detailed analysis of such a system.
The analysis applies for the general case when there is no restriction on the
eigenvalues, and so applies when there are repeated eigenvalues as well as
when all the eigenvalues are distinct. Many structural vibration probiems
have symmetric matrices and the method of modal truncation that can be
applied to problems in this class has important practical applications.

Chapters 12 and 13 are concerned with the analysis and vibration
properties of continuous systems. General series solutions for frequency-
response functions and impulse-response functions are derived and their
application is illustrated by the analysis of the longitudinal vibration of an
elastic column subjected to displacement inputs at one end. Beam and
plate vibrations are considered in detail, including the vibration of beams
when the effects of rotary inertia and shear deformation are included.
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There is also a careful consideration of the application of Rayleigh’s
principle. This principle is used to calculate the whirling speed of a rotating
cantilever shaft of variable area when subjected to external pressure. It is a
problem with no known exact solution. The corollaries of Rayleigh’s
principle give some extremely useful practical results and they are ex-
plained carefully. These corollaries are not as well known as they deserve
to be.

Finally, Chapter 14 is about parametric and nonlinear vibrations. It
begins with the theory of the Mathieu equation and the exact calculation of
stability boundaries, first without damping and then in the presence of
damping. This leads to a consideration of autoparametric systems and the
phenomenon of internal resonance. The Mathieu analysis is also used to
investigate the stability of the forced periodic vibration of systems with
nonlinear stiffness. This introduces nonlinear jump behaviour, when a
periodic response suddenly jumps from one steady amplitude to another
steady amplitude.

When a system with large nonlinearity is subjected to large-amplitude
excitation, there may be conditions under which periodic motion is
impossible. The system then undergoes chaotic motion which never repeats
itself. This behaviour is illustrated by a typical time history computed by
numerical integration of the equations of motion. However, for weakly
nonlinear systems, the main engineering interest is in their periodic
response, and several methods of finding the forced periodic response of
weakly nonlinear systems are discussed. To illustrate how these methods
may be applied, Galerkin’s method is used to calculate the forced response
of a system with a centrifugal pendulum vibration absorber.

In order to help readers who are studying the subject in detail for the
first time and to guide lecturers who may be using the book, a suggested
choice of topics for a first course on vibration analysis and computation is
given after this preface.

The book includes a detailed list of references, and interested readers
will be able to use these references to pursue many of the topics that are
discussed here. Also there is a set of specially chosen problems intended to
illustrate the theoretical ideas and methods in each chapter. The author
hopes that teachers and students will find these problems helpful. Where
possible, answers are given at the end of the problems, but in some cases
the answers are too complicated or too lengthy (for example a graph or a
numerical output from a computer calculation) so that it has not been
practicable to print all the results here. A solutions manual is being
prepared and it is hoped that this will be available shortly after the book is
published. Details can be obtained from the author.

Lastly, it is necessary to say that no warranty is given that the
calculation methods and procedures are free from error. The reader’s
attention is drawn particularly to the legal disclaimer printed below. In
solving any new problem, it is always desirable to begin with special cases
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for which solutions are known and work up progressively to the full
problem. Also, test calculations should be carried out on the full problem
using extreme sets of parameter values (for example very large masses or
very small stiffnesses) to test that the calculation procedure works properly
on asymptotic cases of the full problem. It is possible that major errors will
be found in the book and certain that there will be minor ones. The author
will be most grateful for the notification of all of these and will be very
pleased to hear from readers who care to write with their comments and
with suggestions for improving later editions.

Cambridge University Engineering Department

Trumpington Street D. E. NEwLAND
Cambridge, CB2 1PZ November, 1988
England



Disclaimer of warranty

Neither the author nor publisher makes any warranty, express or implied,
that the calculation methods, procedures and programs included in this
book are free from error. The application of these methods and procedures
is at the user’s own risk and the author and publisher disclaim all liability
for damages, whether direct, incidental or consequential, arising from such
application or from any other use of this book.



Selected topics for a first course
on vibration analysis and
computation

All of Chapters 1, 2, 3 and 4.

All of Chapter 5. The intention is to illustrate the properties of eigenvalues
and eigenvectors without requiring detailed knowledge of the examples.

Chapter 6 deals with the special properties of singular and defective
matrices, and the details may be omitted on first reading. However, the
reader should understand that a matrix cannot necessarily be diagonalized
if its eigenvalues are repeated and should know the form of the Jordan
matrix.

Chapter 7 describes numerical methods for the extraction of eigenvalues
and related calculations. The details may be omitted other than to see in
general terms how eigenvalues are computed.

All of Chapter 8 is needed except for the following sections:

Frequency-response functions when the eigenvector matrix is defective.
Example 8.2: Frequency-response function for a system with repeated
eigenvalues.

Impulse-response functions when the eigenvector matrix is defective.

Use of the matrix exponential function.

Application to the general response equation.

All of Chapter 9.

The discrete response methods in Chapter 10 should be included if time
permits because they are the basis of practical calculations of vibration
behaviour. However, the whole of this chapter may be omitted without
interfering with the rest of the course.

Chapter 11 includes Lagrange’s equations and a detailed analysis of the
properties of systems with symmetric matrices, which are extremely impor-
tant in structural vibration and in many mechanical problems. It is possible
to begin reading at the section entitled ‘Alternative proof of orthogonality
when the eigenvalues are distinct’ and to omit all the earlier part of this
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chapter if time does not allow the detailed analysis in the first part of the
chapter to be absorbed.

All of Chapter 12 except the last section on general response equations.

Chapter 13 contains standard results on beams and plates in its first four
sections, and the sections on Rayleigh’s method are extremely important.
The following sections may be omitted on a first reading:

Timoshenko beam.
Effect of rotary inertia only.
Effect of rotary inertia and shear together.
Beam with a travelling load.
Example of the whirling of a shaft subjected to external pressure.

Chapter 14 includes much important material but time may prevent all of it
being studied in detail. In that case, the sections to be included are:

Autoparametric systems.

Internal resonance.

Nonlinear jump phenomena,

Stability of forced vibration with numerical stiffness.
Numerical integration: chaotic response.

These can be studied alone provided that the equations of motion in the
section ‘Autoparametric systems’ are derived by applying Newton’s laws
rather than by applying Lagrange’s equations. There is reference back to
the stability charts for the Mathieu equation, but if these are accepted
without proof the materiat in the sections listed may be followed without
further explanation.

A syllabus for a course based on this selection of material is given below

together with the numbers of some appropriate problems selected from the
list at the back of the book.

Response properties

Chapter  Problems

Introduction 1 1.1-1.4
Frequency response; expansion in partial
fractions; composite systems 2 2.1-2.6

Receptance and mobility graphs; measures

of damping; forced vibration with

hysteretic damping 3 3.1-3.4
Time for resonant oscillations to build up;

acceleration through resonance 3
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Matrix analysis

First-order formulation; normal coordinates;
calculation of eigenvalues and
eigenvectors 4
Natural frequencies and mode shapes;
examples of the vibration of a chimney,
diesel-electric generator, and railway

bogie 5 5.1-5.5
Numerical methods for modal analysis; the

QR transform (outline only) 7
Frequency-response function and impulse-

response function matrices and their 8 8.1,8.3

computation

Time-frequency transformations

Fourier transforms; time-domain to
frequency-domain transformations;
general input-output relations;
discrete calculations (outline only) 9, 10 9.1,9.2,94

Systems with symmetric matrices

Special properties of systems with symmetric
matrices 11 11.4, 11.6,
11.7

Continuous systems

Normal modes; impulse-response and
frequency-response functions; application
to the longitudinal vibration of a damped
elastic column; properties of beams and
plates 12,13 12.1, 12.2,
12.6, 12.8,
13.1, 134

Approximate methods

Approximate calculations of natural
frequency; the methods of Rayleigh and
of Rayleigh-Ritz; corollaries of Rayleigh’s
principle 13 13.5, 13.8
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Parametric and nonlinear effects

Autoparametric systems; internal resonance;
nonlinear jump phenomena; stability of
forced vibration with nonlinear stiffness;
chaotic vibrations 14 14.1, 14.8,
14.9
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