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PREFACE

The author has for some time found great difficulty in recommending

-

to students studying the subject of ’‘circuit theory’, particularly " -

degree level, a textbook of problems for supplementing their lecture
notes during private study. '

The problems here have been chosen to avoid repetition as far as
possible; some questions require standard proofs while others have
been included to give a general picture of the type of questions
asked in examinations.

To assist students in their reading, a brief theoretical intro-
duction is given at the start of each chapter together with a
general reference to textbooks found most suitable to the topics
involved in the book. The list is by no means exhaustive but repre-
sents books which the author has found readable and suitable to a
study of circuit theory.

The author wishes to express her gratitude to the Council of
Engineering Institutions, for permission to use questions from
their examination papers - the answers given here are the entire
responsibility of the author.

R. V. BUCKLEY
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1T TRANSMISSION LINES

The series resistance and inductance and the leakage conductance
and capacitance to earth of a transmission line -are distributed
over the entire length of the line. The analysis of circuits of
this type cannot be carried out in the samc way as circuits in
which the parameters are lumped together. The relationship
between the currents and voltages at any point on a transmission
line and the currents and voltages which appear at the load may
be seen as follows. Consider a generator feeding a load :L at a

frequency w radians per second through a line of over-all length
1, which has distributed series impedance (R + jwl)D per unit
length and a distributed shunt admittance of (G + jwC) siemens per
unit length. - (See figure 1.1.)
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Figurce 1.1

Apply Kirchhoff's law to the scction

Vx - (Vx + GVX) = (R + jwh)&x I)‘
assuming constant current

avx .
(R#)mL)Ix= —"S; (1.1)

- T 3 4 (. !
L= (0 610 = (6 + juC)exV



assuming constant voltage

81
(G + JWOV = - =& (1.2)

Partial derivatives are used to indicate that only the variations
with distance are teing considered. The time variations are declared
in the use of the complex notation .for impedance and admittance Or
alternatively by the use of a sinusoidal signal from the generator.

By differentiation and substitution

82y

’2‘ - W, = ¢ (1.3)
Sx

where Z = R+ jwL and Y = G + juC. Similarly

621

z - VL= 0 (1.4
§x

the propagation coefficient, and for a given

The product ZY = yZ,
t but may be complex.

line vy is c6itiSean
(1.5)

Yy = a - j3

\
where « is 'he attenuation per unit length, in nepers, and 8 is the
phase char e per unit length, in radians.

In the limit as &§x + 0 equation 1.3 yields as a solution
Vo= AeT TR, XX (1.6)

Differentiation ..d substitution into equation 1.1 give
”

I\(:ﬁz\_e""-g-e”x (1.7)
0 0
where
7 = Z_‘i_ R+1'u.\Li 1.8
0 {¥Y) T |G+ juC (1.8)

and is known as the characteristic impedance of the line. Equations
1.6 and 1.7 also show that two travelling waves are on the line known
as the forward and reflection waves. Therefore to find the complex

constants A and B, consider when x = 0 then V_ = VS and I_ =1
Therefore x X s

—
b

4



therefore

vV +12 Vv - 112
I = - S S O_e-Yx . s s 0 e*Yx (1.9)
x 2 2

e
. v+ 1.2, — Vo - IZo) n 2.10)
X 22 2 :

0
In hyperbolic form and putting x = 2
=' 2 - i
VL VS cosh vy ISZO sinh yg (1.11)
Vs

IL = IS cosh y¢ - Zg—Slnh Y2 (1.12)

If considering the problem from the load end, x may be taken as
negative, then

VS = VL cosh y2 + ILZ0 sinh y¢ (1.13)
v, ‘
I =1, cosh y¢ + =— sinh y2 (1.14)
s L Z0

Thus the input impedance to the line is

. - : Xi ., ZL cosh y& + ZO sinh YZI (1,159
s‘ input Is 017, cosh yg + ZL sinh YQJ
From equation 1.15 it can be seen that if ZL = Z0 then
Zinput = Z0
Similarly from equations 1.9 or 1.10, if Vs = ISZS = ISZO for
ZS = ZO' that is, the line is matched and the reflected trave'ling
wave
Vs - ISZO o *YX
2
disappears.
V.o=ve ™ and 1=1¢7% ‘ (1.16)
X S X N3
V.= ve X e-jBx and I =1e ™ e—ij
X s b3 s

This expression represents a rotating vector, showing the diminishing

valuc of voltag.: Vse'ux and rotating through an angle Bx - lagging



A Bt

Figure 1.2

because of the negative sign. (See figure 1.2.)

The waves travel at the speed of light in loss-free lines only -
the actual velocity of propagation being given by

velocity = wavelength X x frequency.f

]E

1.17)

=X2n
but » = (27)/8, therefore
. - W
velocity = 7 m/s (1.18)

Example 1.1

A single-phase transmission line 10 miles long has the following
parameters

resistance per loop mile 50 Q
inductance per mile 0.001 H
capacitance per mile 0.06 pF

The shunt conductance may be neglected.®

Calculate the characteristic impedance of the line. If the
impedance of the load is equal to the characteristic impedance of
the line and a potential difference of 5 volts at a frequency of
5000/(2n) Hz is applied at the sending end, calculate

(a) the magnitude of the received current
(b) the wavelength
(c) the velocity of propagation.

' . ] a3
2 - 103 (soj;oégogooxog.oozl - 103 (sof 110}

o~
1t

583 /-39.3° @



Since the line is matched

I

Now vy =

=1e and v, = Ve
s s

L

'Y"

[(50 + j10)j150 x 10‘6]l = 0.0875 /50.75°

YL = 0.554 + j0.678

there fore

= Se

-0.554 e-j0.678

-]
L= 2.87 [-38.85° _ 4.92 mA

583 /39.30°

5000

= 2.87 /-38.85°

Velocity of propagation = 00678 mile/s
= 73 746 mile/s B
27 R
Wavelength A = 00678 - 92.7 mile

Example 1.2

The impedance of a telephone line is measured with the far end on

open-circuit and found to be 750 /57° @2, and with the far end short-
circuited 480 /-63° Q. Calculate
2 mW to a resistive load of 300 Q.

“the input voltage needed to supply

From the input impedance equation 1.15 and the information that

on open-circuit ZL = « and on short-circuit ZL = 0, then
Z0
Zoc = tamh yz 24 Zg. = Zo tamh vt
giving
| 2]’
_ | sc
ZO = (Zoc stc] and tanh Yyt = z
oc
therefore
Zy = (750 /57° x 480 /-63°)5 = 600 /-3° R




=

tan

o
1= (480 L;Q}_] - 0.8 /-60°

750 /57°

Using the hyperbolic relationship

1
(1 - tanh? vz)i

]

cosh vy = 0.89 /-11.4°

tanh v&

sinh Y& = =

p=0.71/-71.4°
(1 - tanh? yg)

also ILZR = power, therefore

_ 2 x 1073 4 _

I = [ 5 } = 2.58 mA

and V, = 300 x 2.58 x 1073 = 0.774 volts

therefore
V_=0.774 x 0.89 /-11.4° + 2.58 x 1073 x 600 /-3° x 0.71 /-71.4°
Vg = 0.68 - j0.136 + 0.296 - j1.06
V, = 0.976 - j1.196 = 1.54 /-50.9° volts

Example 1.3

A loss-free transmission liné of characteristic impedance 50 Q is
terminated at one end in a short-circuit and at the other end in a
resistive impedance of 85 2. (See figure 1.3.) The impedance

48mm | 300mm v %
‘a .
5081 500 851

LA
I
Figure 1.3

measured at the junction AA' is found to be 75 Q, resistive, at a
frequency of 44 MHz. Calculate the phase velocity in the trans-
mission line. :

[C.E.I. Part 2, E.F.C., 1968]



i Z, + jZ, tan 81]

Zinput = % Zy + jZ, tan BIJ

since the line is loss free and vy = 0 + jB8, that is, a = 0. On
~-Ci i = = 3 1
short-circuit ZL o, Zinput ]ZO tan 8

Z, = Z__ = j50 tan 8 -x 0.048 (1)
input sS¢C

Similarly for the 300 mm line

. 85 + j50 tan 0.38] 2)

input- 50 (50 + j85 tan 0.38

The parallel combination of these two impedances is 75 Q. However,
it is easy to work in admittance

1 -3 . L |50 + j85 tan 0.38 (3)
75 ~ 50 tan B0.048 ~ 50 {85 + jS0 tan 0.38

1 -j 1 + j1.7 tan 0.38 ) )
L. 85 - jS0 tan 0.3
75 = 50 tan 0,048 ° (852 > 502 tan? 0.58] ( 350 tan 0.36)

equate real terms only

2
%§_= gs _ (1 + tan? 0.38) @)
852 + 502 tan2 0.38
there fore

852 + 502 tan? 0.38 = 75 x 85 + 75 x 85 tan? 0,38
3875 tan? 0.38 = 850 °

tan? 0.38 = 0.219 tan 0.38 = 0.4683

0.38 = 25.1°
n .
B = 83.67 x i80 = 1.46 radians (5)
6
Velocity of propagation = §-= 21—:Tﬂ%gi—gl— =1.89 x 108 m/s (6)
Example 1.4

Derive an expression for the reflection coefficient p in terms of
load and characteristic impedance, using the complexors V and V
representing the forward and reflected voltage parameters instead of
the usual complex parameters. Hence show that the voltage Vx can be
expressed in the fomm

VY /00« [o] /8° - 4mx/2%)



when operating from the load end.

v o= vietYX 4 v
X .
where
v, o+ 1.2 vV, - 1,z
+ L L70 - _ L L0
V = 5 and V = 3
and a
vt v
L=ge e
0 0

where v is the propagation coefficient per unit length of line and

ZO is the characteristic impedance.

At the load x = 0

+

]f.

¥
z(}

—
=1
(=}

By definition the reflection coefficient is the ratio of the reflec-
tion voltage wave to the forward voltage wave.

In the general case

_ ve YX - v ev2yx
vieYX v

(Note the exponential index of -2yx.) At the load where x = 0

Reminder: o will.normally be complex, that is, [p| /6, therefore

Vo= Ve L pyte YR
x
v+ . v+
I =5-e X Dz__e—yx
0 Q



+ -
also = +27 and —=-2
14 0 - 0
1
therefore
I" = -‘pl+

that is, current reflection coefficient equal and opposite to that
of the woltage. Note also that I, = It + 17,

+ +5
For a loss-free line e~ X becomes e“Jsx, therefore

Vx = v (e+jBx + ol Zg'e-jsx)

Vo= V' (Bx + lol /8 - 80)

movement towards
generator
~

i
3
5

o
b

¥

Figure 1.4

Draw a vector diagram; taking the forward wave V' as reference
then, to maintain the correct phase position between v* and V', the
reflected wave rotates through twice Bx. (See figure 1.4.)
Therefore

v, = v' (/0° + |o] /8°-28x°



but B = 2n/X, therefore

v, = VT (0° + o] /8° - amx/2°)

Note that the first maximum voltage occurs when 6° = 28x° while
the first minimum voltage from the load occurs when 8° + 180° = 28x°,
for this particular diagram.

Example 1.5

From the information developed in example 1.4, explain what is meant
by a standing wave and develop an expression for the V.$.W.R. in temms
of p.

First of all note the circle drawn with V' as radius in figure 1.4,
togetner with the circle drawn with V  as radius. As x increases
from point P (the load) towards the source, the phase angle of the
reflected wave increases in the negative sense (clockwise) by
(2n/2) x 2x, so that point P moves round the circle of radius V  or
[plV*. Each time x increases by A/2, the phase angle changes by 2w
radians, so that a linear scale can be marked on the outside circle
representing v avelength moved - once round being equivalent to half
a wavelength. me peak magnitude of the alternating voltage, Vx at

any point x, on the line is seen to vary with x. The line is said
to support a standing wave due to the interaction between the for-
ward and reflected travelling waves.

+ +
Vmax =V o+ [p]V
+ +
b = ¥ ol

The ratio of this maximum value to the minimum value is called
the voltage standing wave ratio (V.S.W.R.}

\' 1+
S = V.S.W.R. = 22X - £
V. - |p
mi
or |Q’ - S - 1
S 1
Clearly in the case of a matched line when V' = 0,S = 1.
Example 1.6
A line of characteristic impedance 600/0° Q@ is terminated in a load
ZL. The V.S.W.R. measured on the line is 1.5 and the first maximum

otcurs at 20 cm from the load. The line is open wire and is supplied
from a generator at 300 MHz. Find the value of the load impedance.

10



Since the line is open wire
3 x 108 = A x 300 x 106
or A= 1m
therefore 20 cm is equivalent to 0.2A, thus x = 0.2X.

From example 1.5
1.5 -1 _
lol = Tis=y = 0.2

while the angle is obtained from

8° = 28x° = ﬁ; x 0.2

8 = 0.87 radians = 144°
This positive angle indicates that the reflected wave leads the for-
ward wave at the load by 144°. Therefore

0.2 /144° < ZL.- 600
2 44 ZL+600

Z, (1 +0.162 « j0.117) = 600 (-0.162 + jO.117 + 1)
0.838 + 30.117]
Zy, = 600 [1.162 = 30.117
. 600 x 0.846 /8°
1.168 /-5.75
= 434.6 [13.75°

%L = (422 + j103.3)
/

Example 1.7

Show that a loss-free transmission line of length [(A/4) + (nA/2)]
may be referred to as an impedance transformer and is used as an
impedance-matching device. .

Such & line has a characteristic impedance of 600 2 and negligible
losses. It is 50 m long and is open-circuited at one end. At the
other end it is connected to a generator which generates 100 volts at
15 MHz, and has an internal impedance of (200 + j200) . Non-
inductive loads of 600 2 each are connected across the line at- dis-
tances of 30 and 35 m from the source. Calculate the currents in
the two loads.

11



The input impedance at any distance x down the line is given by

, .z ZL cosh yx + Z0 sinh Y&}
input 0 ZO cosh yx + ZL sinh yx|

For a loss-free line, yx = jBx, therefore

Z, cos Bx + jZO sin Bx]
Z =7 L - -
input 0 1z, cos Bx + jZ; sin Bx|

Divide through by cos Bx

; .z [ZL + jZO tan Bx]
“input © %0 |Z7+ 32, tan Ex|
Reminder: ZO = (L/C)i, a real quantity, and B = (LC)!, thqyefore
S U N '[-L—"&cot /(O x
oc j tan Bx tan Bx JIE w
. 2mx
Zoe = 7 JZg ot 5
- Similarly

. - 2mx

2 = JZp tan =

Thus it can be seen that the input impedances of open and short-
circuited loss-free lines are always reactive and vary from +j= to
-j~ as the phase Bx changes with either length or frequency. For
a fixed frequency, figure 1.5 shows the variation of reactance.

Note that increasing the length of the line by exactly half a
wavelength does not alter the input impedance. Similar variations
of input reactance occur if the frequency of the input signal is
varied and fed into a fixed length of line,.

A loss-free line one-quarter wavelength long terminated in a
load ZL has an input impedance of -

d
ZL + iz tan w/21

2
= 7 0
ipput 0 Z0 + jZL tan /2|

z
ZL

Z

Since B = 2n/)

m L
Z0 tan 3 >> ZL and ZL tan 5 >> ZO

This shows that a quarter wavelength line may be used as an impedance-
matching device. S
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