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Preface

Like Monsieur Jordan in Le Bowurgeois Gentilhamme, who found to his great surprise that
he had spoken prose all his life, mathematicians are becoming aware of the fact that they

have uscd semigroups extensively if not consciously.
EINAR HILLE

It is diffecult to tell when semigroup theory began. The concept was formulated
and named in 1904, but in an 1887 paper, Giuseppe Peano [1]* wrote the system
of linear ordinary differential equations

duy/dt = ay,u; + - + ayu, + f,()

dun/dt = anl u, + 0+ annun + fn(t)

in matrix form as du/dt = Au + f and solved it using the explicit formula
t
u(t) = e u(0) + f e f(s)ds,
4]

where €4 = ) = *A*/k!. That is, he transformed a complicated problem in one
dimension to a formally simple one in higher dimensions and used the ideas of
one-variable calculus to solve it. That is the essence of this book.

The spectral theory of self-adjoint and normal operators on Hilbert space is
based on the same idea. The notion of a self-adjoint operator is very special, and
spectral theory enables one to take more-or-less arbitrary functions of it. In
semigroup theory one only wants to take the exponential function of an operator,
so one can work in much greater generality. This allows for the possibility of
many surprising applications and the extension to a setting of nonlinear
operators.

Mathematicians started taking one-parameter semigroup theory seriously in
the 1930s. Perhaps its development became inspired when it was realized that the
theory had immediate applications to partial differential equations, Markov
processes, and ergodic theory. In 1948, Einar Hille published his monograph
Functional Analysis and Semi-Groups in the American Mathematical Society
Colloquium Series. The theory continued to develop rapidly in the fifties, thanks
largely to Ralph Phillips; Hille’s monograph then evolved into the Hille-Phillips
book the same title, which makes substantial additions and deletions to the
material in Hille’s original book. The Hille-Phillips book, together with Part I of
the three-volume series by Dunford and Schwartz, served as a Bible for my
generation, the students of the sixties.

' 1 am indebted to Eugenio Sinestrari for this reference.
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In 1970 I wrote a short set of lecture notes for a course on semigroups of linear
operators at Tulane University. Themwost striking feature of those notes was how
disjoint they were from Hille-Phillips. Post-1957 results (such as the Neveu-
Trotter-Kato approximation theorem and the Chernoff product formula) played
a prominent role, and simple transparent proofs had been found for many of the
older results. The main flaw in those notes was that they did not begin to indicate
the wide scope of applications of the simple theory. In 1972, I wrote another set
of notes for an analogous course on nonlinear semigroups. Some years later I
accepted Gian-Carlo Rota’s suggestion to expand the lecture notes, linear and
nonlinear, into a book, with a great emphasis on the applications.

This project turned out to be bigger and much more complicated and time
consuming than 1 anticipated. The result is two volumes: the present one on
linear theory and applications and a forthcoming nonlinear one.

The emphasis is on motivation, heuristics, and applications. It is hoped (and
planned) that this work will be of use to graduate students and profess wals in
science and engineering as well as mathematics. All the main results afe well-
known, but several of the proofs are new. An effort was made to solve some
nontrivial initial value problems for parabolic and hyperbolic differential
equations without doing the hard work associated with elliptic theory. The
reason is pedagogical; we wish to get across some of the main ideas involved in
Cauchy problems for partial differential equations as an easy consequence of
semigroup theory. Besides partial differential equations, other areas of appli-
cation include mathematical physics (Feynman integrals, scattering theory, etc.),
approximation theory, ergodic theory, potential theory, classical inequalities,
fluid motion, and so on.

The exercises marked with an asterisk range from difficult to very difficult
indeed. Some of them are research results which are incidental to the text but of
sufficient interest to deserve to be stated. The bibliography requires some
explanation. As a graduate student, I was very impressed with the large list of
references in Dunford-Schwartz. It led to many enjoyable evenings of browsing in
the library. I thought it would be useful to compile a complete list of references on
the theory and applications of operator semigroups. 1 tried, but I have not
succeeded because, as [ painfully discovered, the literature is simply too vast for
me to keep up with. Nevertheless, a large list was compiled. This list, which covers
more than three hundred single-spaced type pages, is cited in the References at the
end of the book as Goldstein {24]. To include all of the relevant references here
would have made the book unnecessarily long and expensive. Thus many
important articles have not been included. Nevertheless, the bibliography
presented here contains a fairly substantial and representative sampling of the
literature. This should help those readers interested in learning more about the

. theory and applications than the text presents.

We use the Halmos symbols iff for “if and only if " and Il to signify theend of a
proof.

Over the years, I have had various opportunities to lecture on the material in
'this book and in the forthcoming one. For their kind invitations or helpful
comments or encouragement (or usually all three), I thank Geraldo Avila and
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Djairo de Figueiredo (Brasilia), Luiz Adauto Medeiros and Gustavo Perla-
Menzala (Rio de Janeiro), Dick Duffin and Vic Mizel (Carnegie-Mellon), M. M.
Rao (California-Riverside), David Edmunds and Eduard Fraenkel (Sussex), John
Erdos (Kings-London), Rosanna Villella-Bressan (Padova), and my Tulane
colleagues, Tom Beale, Ed Conway, Karl Hofmann, and Steve Rosencrans. 1
thank Brian Davies, Frank Neubrander, Simeon Reich, and Eric Schechter for
correcting errors in the typescript. I thank Gian-Carlo Rota for his suggestion to
write this book and for his encouragement. I record my admiration of Haim
Brezis, the late Einar Hille, Tosio Kato, Peter Lax, Ralph Phillips, and K6saku
Yosida for publishing such beautiful articles and for being constant sources of
inspiration. I thank Susan Lam who typed the manuscript beautifully and
efficiently. I gratefully acknowledge the partial support of the National Science
Foundation. Finally, I thank my wife, Liz, and my children, David and Devra, for
putting up with me and this project for all these years.

New Orleans J.A G.
Decembéy, 1983
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Chapter 0

A Heuristic Survey of the Theory and
Applications of Semigroups of Operators

The evolution of a physical system in time is usually described by an initial value
problem for a differential equation. (The differential equations can be ordinary or
partial, and mixed iritial value-boundary value problems are included.) The
general setup is as follows. Let 4{t) describe the state of some physical system at
time t. Suppose that the time rate of change of u(t) is given by some function 4 of
the state of the system u(t). The initial data 4(0) = f is also given. Thus

4 .
S ult) = A[u]  (20) (©.1)

u(Q) = f.

(For short du/dt = Au, u(0) = [}
First of all we must make sense out of

du(t)/dt = him 57 {ut + A) — u()].
P

The function u takes values in a set 2. In order for u(t + h) — u(t) to make sense,
& is taken to be a vector space. In order that limits make sense in 4, & is taken to
be a Banach space. (More generally, 2 could be a topological vector space or a
differentiable manifold. But the desire to present a clean and complete theory
with lots of applications in a reasonable number of pages led us to omit any
setting more general than a Banach space.)
A is an operator (i.e. 4 funciion) from its domain 2(A4)in & to 4. The equation
dufdt = Au is interpreted tc mean that u{;) belongs to 2(4) and that
lim A7 [u(t + h) — u(t)] — AL}l = 0,
k-0
where ||4| denotes the norm in 2.
Here are three exampies.

Example 1. Let Qbe a bounded domain in n-dimensional Eudidean space R"
and let AQ denote the fnice) boundary of Q. Let A =Y |, 8%/0x}? denote the
Laplacian. Consider the following classical mixed initial-boundary value prob-
lem for the heat equation. We seek a function w = w(t,x), defined for 0 < ¢ < o,
x €Q = Q U &Q, such that

%;v— = Aw for (t,x) € [0,00[ x Q,
w(0,x) = f(x) for x e 0.2)

w(t,x) =0 for xe it 2 0.

8850157
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4 A Heuristic Survey of the Theory and Applications of Semigroups of Operators

(For consistency we should have f{x)= 0 for x e dQ.) Write u(t) = w(t,-), re-
garded as a function of x, and take & to be a space of functions on Q, e.g. L*(Q)for
some p > 1 or C({2), the continuous functions on the closure of €. The derivatives
du/dt and dw/ot are both limits of the difference quotient h™![w(t + h,x) —
w(t,x), the first limit being in the sense of the norm of & and the second limit
being a pointwise one. Even so, we can formally identify éw/dt with du/d:. Clearly
the functions denoted by f in both (0.1) and (0.2) can be identified with each other.
To define A we take = C(Q) for definiteness. Let 2(4) = {ve C(Q): v is twice
differentiable, Av € C(Q), and v(x) = O for each x € 3Q}. Define Av = Av for
v € @(A). Equations (0.2) are thus written in the form (0.1). Note that the
boundary condition of (0.2) is absorbed into the domain of definition of the
operator A and into the requirement that u(t) € 2(4) for all ¢ = 0.

Example 2. Consider the initial value problem for the wave equation

2
%{;— = Aw for (t,x) € [0,0[ x R",
w(0,x) = fi(x) forxeR" (0.3)

£;—‘;(O,x) = f(x) for xeR"

For & we take a space of pairs of functions on R”. We set

w(t,")

_ low - fx)» dA=(O 1)
“= =) S ( n)™ A0

ie.

Then formally (0.3) becomes (0.1).

Example 3. Consider the initial value problem for the one-dimensional
Hamilton-Jacobi equation

ow ow
i = R
A +F(ax) 0 .(tZO,xe ),

w(0,x) = f(x) (x e R).

We take & to be a space of functions on R and set u(t) = w(t,), Av = — F(dv/dx).
Then (0.4) formally becomes (0.1). Note that the operator A4 of this example is

0.4

_ nonlinear, in contrast to the two preceding linear examples.

We return to the notion of a physical system which we imagine being housed in
our (imaginary) experimental laboratory. In a well-posed physical experiment
something happens, only one thing happens, and repeating the experiment with

 ouly small changes in the initial conditions or physical parameters produces only
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small changes in the outcome of the experiment. This suggests that if the initial
value problem (0.1) is to correspond to a well-posed physical experiment, then we
must establish an existence theorem, a uniqueness theorem, and a (stability)
theorem which says that the solution depends continuously on the ingredients of
the problem, namely the initial condition f and the operator 4.

Suppose (0.1) is well-posed in the above (informal) sense. Let T(t) map the
solution u(s) at time s to the solution u(t + s)attime + s. The assumption that 4
does not depend on time implies that T'(¢) is independent of s; the physical
meaning of this is that the underlying physical mechanism does not depend on
time.

The solution u(t +t) at time ¢ + t can be computed as T(t + t)f or,
alternatively, we can solve for u(t) = T(1)f, take this as initiat data, and ¢ units of
time later the solution becomes u(t + t) = T{(t)}{T(t)f). The uniqueness of the
solution implies the semigroup property

T +1)=T)T(z) t,1>0.

Also, T(0) = I = the identity operator (this means that the initial condition is
assumed), t — T(t)f is differentiable on [0,00( {and (d/dt)T(t)f = AT(t)f so
that u{t) = T(t)f solves (0.1)], and each T(t) is a continuous operator on Z.
(This reflects the eontinuous dependence of u(t) on f) The initial data f should
belong to the domain of 4, which is assumed to be dense in &' Finally, each Tr)
is linear if A is linear.

We are thus led to the notion of a strongly continuous one-parameter
semigroup of bounded linear operators on a Banach space &. Such a semigroup
is called a (C,) semigroup; this terminology, introduced by Hille, has become
standard. The definition is as follows. A family T = { T(£):0 < t < oo} of linear
operators from & to & is called a (C;) semigroup if

@) NT@) < oo (e sup{iT@)fll:f € Z,lIf] <1} < o) foreacht 2 0,

() T +s)f=T)T)fforall feZ andallts =0,

(i) TO)f =fforall feX,

{iv) t— T(2)f is continuous fort > 0 for each f € .

T is called a (C;) comtraction semigrowp if, in addition,
™) ITOf <HfNforallt>0andall fe g,
ie. IT()) < 1 foreacht = 0.

Roughly speaking, for most purposes it is enough to consider only (Co)
contraction semigroups. (This will be fully explained in Section 2 of Chapter 1)

Let T be a (C,) semigroup. Define its generator (or infinitesimal generator) A by

the equation
Af = lim ﬂfl{_:l

-0 A

where / is in the domain of A iff this kmét cxists. Formally, the semigroup
property suggests that T(¢) = “e'4” where A = (d/d1) T(t)),o. This also suggesfs
that the solution of (0.1) is given by «t) = T(t)f, where T is the semigroup
gencrated by A. The following result is basic. :
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TueoreM I (well-posedness theorem). The initial value problem (0.1) (with A
linear) is “well-posed” iff A is the generator of a(C,) semigroup T. In this case the
unique solution of (0.1) is given by u(t) = T(t)f for f in the domain of A.

See Chapter II, Theorem 1.2 and Exercise 1,5.4 for precise versions of this.
The obvious question that arises at this point is: which operators 4 generate
(C,) semigroups? For simplicity we work with a (C,) contraction semigroup T If
A is the generator of T, think of T(t) as e*4. The formula
1

- © a4
T4 Le e dt,

which is valid when 4 is a number and 4 > Re(A), suggests the operator version
. 20
(Al — Ay 'f = f e MT()f dt, (0.5)
0
which turns out to be valid for all 4 > 0 and all f € &; here I is the identity

operator on &. The f is there to make the integrand nice, namely, continuous and
bounded in norni by the integrable function || f |le”*. The estimate

< '[ Y T de
[4]

J'm e HT()S di

0
[+ 23
< L e M| flde =1/
suggests that:

for each 4 >0,
Al — A maps the domain of 4 onto & {0.6)

and [|[(A] — A Y| < 3 lfilforall fed.

THEOREM II (Hille-Yosida geneiation theorem). A linear operator A generates
a (C,) contraction semigroup iff the domain of A is dense in & and (0.6) holds.

One can recover the semigroup T from the eensrator A by inverting the
Laplace transform (0.5) or by other methods, such as the formula

T()f = lim (1 —2/!) f;
note that (I - ad)™! = A(Al — A)"! where A = 1/a.

The impottant implications in Theorems I and II are: (i) A densely defined
operator A satisfying (0.6) generates a (C,) semigroup. (ii) If A generates a (Co)
semigroup T, then the initial value problem (0.1) is well-posed and is governed by
T. In other words, we solve (0.1) by solving equations of the form 4k — Ah =g
and getting a solution h satisfying the estimate ||h}| < |ig{//4; this should be true
foralge ¥ and 4 > 0.



