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Preface

The subtitle of this book is very important. The book does not cover
the entire field of free energy transduction in biology but rather only one
special topic: the steady-state kinetic and thermodynamic formalism related
to free energy transduction. As the word *formalism ™ implies, the discussion
concerns general principles and methods and not details of proposed
mechanisms in the various special cases. Although the main argument is
put forward in terms of examples, the examples are chosen, for the most
part, for pedagogical reasons rather than as serious models.

The advantage of this kind of approach is that one can attain a kind
of overview of how free energy transduction is accomplished. The dis-
advantage is that most current research activity quite naturally lies elsewhere:
in attempts to establish the molecular mechanism in particular cases. But
as the latter work progresses and detailed models are suggested, the
formalism presented here should prove useful in the calculation and under-
standing of the steady-state kinetic and thermodynamic properties implicit
in such models.

Perhaps the main theme of the present book is that, with respect to
general principles, free energy transduction can be quite simply understood
in terms of conventional kinetics and thermodynamics—suitably related
to each other. In particular, it will be argued that free energy transduction
is accomplished by complete biochemical cycles and not by individual steps
or transitions (as often assumed). A brief abstract of this argument is to be
published in Trends in Biochemical Sciences (1977).

The book attempts to bring together, in a single coherent account,
work published over the past ten years in various research papers. In
addition, many new examples and much new material have been added.

Additional introductory comments are included in the first section of
Chapter 1.

The writing of this book was greatly aided by the skill and patience
of Mrs. Alma Martinson, who typed the manuscript.

I am indebted, for very valuable comments on the manuscript or its
subject matter, to Drs. Britton Chance, Elliott Charney, Don DeVault, John
Gergely, Joel Keizer, David Kliger, Robert Simmons, Eugene Switkes, and
Peter von Hippel.
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xii PREFACE

Note on Notation

The symbol A’ was originally introduced for the “basic free energy”
[Progr. Biophys. Mol. Biol. 28, 267 (1974)] because of its relationship to
the canonical partition function Q. This partition function is a practical
one to use in macromolecular statistical mechanics, whereas the partition
function A (related to the Gibbs free energy G) is not. However, for
formal thermodynamic and kinetic purposes, as in this book, one might
as well use G’ instead of A’ because G’ is the exact quantity for a constant
pressure system while A’ is a close approximation of it. The reader
should feel free, if he wishes, to make a mental substitution of G' for A’
throughout the book.
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Chapter 1 The Diagram Method: States

1.1 Introduction

There are many examples in biochemistry in which a macromolecule,
usually an enzyme or enzyme complex, can exist in a finite number of discrete
states and such that the macromolecule undergoes continuous cycling among
these states at steady state. Ligands, substrates, and products (at fixed con-
centrations) are involved in some of the transitions between states, but in the
formal kinetics the macromolecule plays the central role because it is present
in every state. Although simple steady conversion of substrate into product
by an enzyme is an example, the more interesting cases involve transduction
of one form of free energy into another, as in various kinds of active trans-
port, oxidative phosphorylation, phototranslocation coupling, muscle
contraction, etc. Analysis of systems of this type provides a foundation for
the understanding of the general principles involved in many, if not most,
bioenergetic transformation problems.

Let us try to be quite clear at the outset about the level and the generality
of the theory to be summarized in this book. What will be presented here is
not a theory at the most fundamental molecular or atomic level. In fact, at
the present time there is no single example of free energy transduction about
which sufficiently detailed experimental information is available to allow the
construction (with confidence) of a complete molecular model or theory.
Such models can be expected to come along, one at a time, in the future.
[Because of its relative simplicity, phototranslocation coupling (1, 2) in the
purple membrane of Halobacterium halobium is likely to provide the first
example.] In fact, we can never expect a completely general theory of free
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2 1. THE DIAGRAM METHOD: STATES

energy transduction at the molecular-atomic level because of the vast variety
of detail that must be encompassed. Rather, molecular models must be
approached on an ad hoc basis, though undoubtedly many of them will
prove to be closely related to one another.

On the other hand, in this book, we do not go to the opposite extreme of
presenting a discussion of free energy transduction in completely phenomen-
ological terms—for example, in the language of Onsager's nonequilibrium
thermodynamics suitably generalized, as would be required for most of
these problems, to apply very far from equilibrium.

Instead, we follow an intermediate course. We deal with macromolecules
(proteins, enzymes, complexes), their interstate transitions (including the
smaller molecules with which they interact), and the rate constants govern-
ing the probabilities of these transitions. But, as suggested above, we do not
attempt, in any example, to furnish an ab initio theory of the rate constants
per se. We take the macromolecular states, transitions, and rate constants as
given, and then examine the nature of free energy transduction, and a
number of related topics, in these terms and at this level of detail. This
approach seems to provide the clearest possible overview of the general
theoretical principles involved in free energy transduction; it does not lose
sight of the forest for the trees, as must almost inevitably be the case in a
completely detailed molecular analysis of various special cases. Thus the
level we adopt permits of very considerable generality and allows further
details to be incorporated into particular examples, as the details become
available, without disturbing the validity of the general kinetic formalism to
be presented here.

Incidentally, exactly this same level of detail—neither ab initio molecular
nor phenomenological—is used with great effect by Joel Keizer (3) in his
recent very general treatment of dissipation and fluctuations in far-from-
equilibrium thermodynamic systems.

The analysis of steady-state enzyme action and free energy transduction
in terms of the rate constants operating between discrete macromolecular
states is, of course, routine rather than novel in special cases (I, 4-14). But
our object in the present monograph is to present a single systematic formal-
ism that is applicable to a wide variety of such examples. We are interested
here in analytical methodology rather than in particular models for particu-
lar problems. This same point of view was adopted, incidentally, in two
recent papers (15, 16) on the theory of muscle contraction; but, of course,
experimentally founded “ particular models " are the ultimate goal.

The main analytical tool in the study of these discrete-state, cycling
systems is a diagram method introduced by King and Altman (17) in 1956
and rediscovered and extended in several ways (cycles, cycle fluxes, coupling,
reciprocal relations, membrane transport) by Hill (18, 19) in 1966. In fact, it




1.1 INTRODUCTION 3

is the extensions of the King-Altman method that will be found of most use
in the present book. More recently, the different kinds of free energy levels of
the macromolecular states, especially at steady state, have been discussed by
Hill (15, 20), Hill and Simmons (21, 22). and Simmons and Hill (23). Also,
fluctuations and noise in the steady-state probabilities of states and in cycle
fluxes have been investigated by Hill (20, 24), Hill and Chen (25), Chen and
Hill (26), and Chen (27-29). Finally, multienzyme complexes have received
some attention (30). Thus, a substantial theoretical foundation is now avail-
able as an aid in the study and understanding of these systems.

Although the object of this book is to provide a unified account of these
subjects, we shall use, for this purpose, illustrative examples rather than
abstract generalities as much as possible. This should make much of the
material here—especially the essentials-—easily accessible to nontheoretical
biochemists and biophysicists. Furthermore, most of the numerous
examples will be chosen strictly for their pedagogical value rather than as
models to be taken seriously. One aim is to provide sufficient and suitable
examples so that the interested reader will be able to analyze his own models
by these methods.

Although expressed in quite different language (18, 19), Chapter 1 has for
its foundation the King-Altman (17) diagram method for the calculation of
steady-state probabilities of states. Chapter 2 then introduces the essential
topic of cycles, cycle fluxes, etc. Chapters 3-5 contain a discussion of the
more important bioenergetic principles that emerge from the diagram
approach. These are the most important chapters in the book. Chapters 6
and 7 are concerned with somewhat more specialized aspects of the subject:
stochastics and fluctuations (Chapter 6): and interacting subsystems and
multienzyme complexes, including oxidative phosphorylation (Chapter 7).
Incidentally, Chapter 7 does not depend at all on Chapters 5 and 6.

Certain important special topics are treated briefly in the appendices:
“reduction™ of diagrams: membrane potential and charge carriers; and
systems that make use of photon absorption. As will be explained in Appen-
dix S, systems that absorb (or produce) radiant energy are exceptional and
do not fully fit into the formalism of this book: Chapters 1, 2, and 6 are
applicable to such systems, but not Chapters 3 and 4 as they stand.

A chapter on noise theory, which would be a logical extension of Chapter
6, is omitted because it would have to be relatively sophisticated mathemat-
ically, and because a review of this topic has just been written by Chen (31).

Actually, much of the discussion in this book (all but Chapters 4 and 5)is
more general than implied above. That is. some of the analysis applies to any
first-order discrete-state kinetic system at steady state (19, 32). However, for
definiteness and because the motivation here is biochemical, we shall intro-
duce and maintain a macromolecular or enzymatic context throughout.



4 1. THE DIAGRAM METHOD: STATES

1.2 Diagrams for Steady-State (and Equilibrium) Systems

We consider a large number N (an ensemble) of equivalent and indepen-
dent macromolecular units or systems (e.g., one unit equals one enzyme
molecule or complex), either free in solution or immobilized (e.g., in a mem-
brane or in a myofilament). Each unit may exist in any one of n discrete
states, i = 1, 2, ..., n. Transitions are possible between some pairs of these
states (possibly all pairs). Ligands, substrates, and products may be involved
in some transitions but, if they are, their concentrations are assumed to be
essentially constant over the time scale of interest here. All transitions are
treated as first-order processes; the first-order rate constant for the transi-
tion i—j is denoted by a;;. For example, for the binding transition E
(enzyme) + S (substrate) —» ES, we would use a = a*cg, where a is the first-
order rate constant, a* the second-order rate constant, and ¢g the concentra-
tion of substrate (see Section 3.1 for further details).

The n possible states for each unit can be represented by points in a
diagram, with a line between two points indicating possible inverse transi-
tions. For example, Fig. 1.1b is the diagram representing the kinetic scheme
in Fig. 1.1a (where P means product).

%E (1)\‘\\

ES 2) TS EP @) 2 3

(a) {b)

FIG. 1.1 (a) First-order rate constant notation. (b) “ Diagram™ corresponding to (a).

A few other examples of diagrams are shown in Fig. 1.2 (many others
will be encountered later in the book). Figure 1.2a could represent a conden-
sation of Fig. 1.1b if state 3 in Fig. 1.1b is a transient intermediate (see
Appendix 1). Another possibility would be: state 1 = E in a membrane; state

= EL in the membrane; L is a ligand present in both baths (A and B), on
either side of the membrane (usually c, # cg), with binding of L on E
possible from either bath. The left-hand line in Fig. 1.2a would then repre-
sent, say, transitions involving adsorption-desorption from bath A while the
right-hand line relates in the same way to bath B.

Figure 1.2b is the diagram of a common type of system, one with con-
secutive reactions. For example, the Hodgkin~Huxley potassium channel
(four subunits) in the squid giant axon membrane has this kind of diagram
but with five consecutive states (33).
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1.2 DIAGRAMS FOR STEADY-STATE (AND EQUILIBRIUM) SYSTEMS 5

1 2 3 4
1 2 3
4 1
2 5 6 2 3
(a) {b) (c) {d)

FIG. 1.2 Examples of diagrams.

Figure 1.2c might represent an expansion of Fig. 1.1b if the enzyme can
exist in two conformations, E and E*, with state 4 = E*, state 5 = E*S, and
state 6 = E*P. The same diagrams would obtain if E binds, on a separate
site, a ligand L that may or may not modify the enzyme kinetics. In this case,
4 = LE, 5 = LES, and 6 = LEP. An example of this would be E = myosin,
S = ATP, P = ADP + P,, and L = actin. Figure 1.2d is a special case of
Fig. 1.2c in which states 5 and 6 are unstable (i.e., S and P do not bind
appreciably to E* or to LE in the two examples above).

If N,(t) is the number of units of the ensemble in state i at t, the kinetic
equations for the diagram in Fig. 1.1b (as an example) are

dN,/dt = (a3 Ny — a; ;N ) + (a3, N3 — ;3 Ny), (1.1)

with similar relations for dN, /dr and dN , /dt, together with the conservation
relation

N1+N2+N3=N. (1-2)

However, one of the three differential equations is redundant (ie., not
independent). In any example the differential equations are automatically
implied by the diagram: each line in the diagram leading into state i will
provide a pair of terms in the expression for dN,/dt, as in Eq. 1.1.

The probability of state i, that is, the fraction of units in state i, is
p; = N;/N. Fluctuations in the N, and related topics, will not be considered
until Chapter 6.

At t = oo, all dN,;/dt = 0 and the ensemble of N units will be either at
equilibrium or at a nonequilibrium steady state. A steady state is possible
only if the diagram contains at least one cycle (a single closed path in the
diagram, not including any appendages). Thus Fig. 1.2b, with no cycle, can
only lead to equilibrium at t = cc. The other diagrams in Figs. 1.1 and 1.2
contain cycles (indeed, Fig. 1.2c has 14 different cycles—see Fig. 4.13). If a




6 1. THE DIAGRAM METHOD: STATES

diagram possesses one or more cycles, the rate constants might have values
such that the ensemble reaches equilibrium at t = x, but in general a steady
state is to be expected. If the product of rate constants in a particular
direction around any given cycle x of a diagram is designated by I1, , , and
the product in the opposite direction is designated [T, _, then the condition
for equilibrium is I1,, = I, _ for every cycle in the diagram. (Ordinarily
we take + to be counterclockwise for each cycle) For example, in
Fig. 1.1a, the condition is &, , 2,3y, = a,,%3,%,;. This requirement is a
straightforward consequence of the application of detailed balance at equili-
brium (e.g., o, N§ = a,, N§ in Fig. 1.1a and Eq. 1.1) to each line in the cycle
being considered.

The individual transitions in each of the N systems (units) of an ensemble
are stochastic in nature. Therefore, in a collection of identically prepared
ensembles, or if the same experiment is repeated over and over on a single
ensemble, we would encounter fluctuations in the quantities N,(t) about
mean values N (). It is actually the mean values that appear in equations
such as 1.1. But, for simplicity of notation, we shall omit mean value over-
bars on the N, (and on the fluxes, below) until needed explicitly in Chapter 6.

1.3 Directional Diagrams and the Steady-State
Populations of States

We shall introduce this subject by means of a hypothetical model for
active transport of one ligand by another across a membrane. As indicated
in Fig. 1.3a, a protein E has a site (-) for binding a ligand L, and another site
(x ) for binding a second ligand L, . Both baths contain both ligands at the
concentrations indicated in the figure. However, the L, site on E is “ac-
tivated " only if L, is already bound. The protein, with ligand L, bound, can
undergo a conformational change (223 or 42 5) that has the effect of
switching the bath to which the binding sites are accessible. The diagram is
shown in Fig. 1.3b. It can be thought of, for example, as a reduced form of
the diagram in Fig. 1.3¢, if there is a fast equilibrium between states land I’
(i.., a fast conformational change in E in the absence of ligands); see Appen-
dix 1 in this connection.

As the system (i, E + L; + L,) moves via transitions around the dia-
gram (Fig. 1.3b), completing cycles of the three types possible, the net effect
is to transport L, and L, from one bath to the other. At equilibrium
Cia = Cins C2a = s, and there is no average net transport of either ligand.
But at steady state, where we have concentration inequalities rather than
equalities, a sufficient concentration difference in one ligand can cause a net
flux in the other ligand against its own concentration gradient. That is, a free

oS
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1.3 DIRECTIONAL DIAGRAMS AND STEADY-STATE POPULATIONS 7

ta)

Bath A (CIA'CZA)

L,
K- L‘ V3 Ll
Membrane E E E
o~1-L,
L, L
State 1 2 3 4 5
Bath B (¢, ‘:ZB’
1 1
1
2 3 2 3
4 5 4 5

(b) {c)

FIG. 1.3 (a) Hlustrative model for membrane transport of two ligands L, and L, between
two baths A and B: +, site for L,; x, site for L;; E. macromolecule or enzyme. (b) Diagram
corresponding to (a). (c) Expanded diagram if state 1 is expanded into two states.

energy decrease in one ligand can be partially converted into a free energy
increase in the other, with a certain nonzero efficiency. This aspect of the
model is pursued in Chapter 3. But we turn now to the algebraic problem.

Our main concern is with steady-state fluxes, but we are interested also
in the steady-state values of the N;, denoted by N* (equilibrium values of
the N; will be indicated by Nt). Of course, the N* may be found in a
straightforward way, in any particular case, by solution of a set of linear
algebraic equations (see Eq. 1.4, below). But if the model is at all com-
plicated, this may involve a great deal of tedious labor. One of our main
objects in this chapter is to show how the solution of the algebraic equations
can be found, alternatively, from an enumeration of a certain class of dia-
grams (17-19). Furthermore, the solution in terms of diagrams has a certain
intuitive appeal, and leads directly to the net flux between any transition-
pair of states in the diagram.

In the above paragraph, we are referring to a solution of the linear
equations for the N as explicit functions of all the rate constants of the
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model and N. Of course if one needs only numerical solutions for the N or
p® = N*/N in particular cases, the job is most simply done by computer
without reference to diagrams.

The directional diagrams (17-19) introduced in this chapter, then, are
valuable in providing explicit solutions for the p7. But the flux diagrams
(18, 19) defined in Chapter 2 play a more fundamental role: they furnish the
basis for a comprehension of the various components of flux present in a
steady-state system with a multicycle diagram, and therefore of such proper-
ties as thermodynamic “ coupling,” free energy transfer, reciprocal relations
(near equilibrium), rate of entropy production, fluctuations and noise in
fluxes, etc.

The differential equation for N is

dN,

dt
with similar expressions for dN,/dt, etc. Each pair of terms on the right
corresponds to a line in the diagram, Fig. 1.3b. Thus dN, /dt is equal to three

pairs of terms, and there are three lines emanating from state 2 in the
diagram; etc. At steady state, Eq. 1.3 becomes

(“21Nf_“12NT)+(“31N§"‘113N??)=0- (1.4)

At equilibrium, each pair of terms is separately equal to zero (detailed
balance).

We obtain an equation like Eq. 1.4 for each state. Thus, in this example,
we have a set of five linear equations in the five N*. But only four of these
equations are independent. The fifth independent equation, necessary to
solve for the N, is Y; N* = N. The solution will give each p* = Ni"/N asa
function of rate constants.

However, instead of solving for five unknowns in the conventional way,
as an alternative we can write the solution using diagrams as follows. [The
proof (18) is given in Appendix 2.] The first step is to construct the complete
set of partial diagrams, each of which contains the maximum possible
number of lines (four here) that can be included in the diagram without
forming any cycle (closed path). There are eleven such partial diagrams in
this case, shown in Fig. 1.4. .

If one more line is introduced into any vacant position in any of these
partial diagrams, a cycle is produced.

At least one line goes to each vertex (state) in a partial diagram (other-
wise more lines could be introduced without forming a cycle).

The next step is to introduce arrows (i.c., a directionality for each line)
into the partial diagrams of Fig. 1.4 in five different ways, one way for each
state (vertex). For example, consider state 2. Figure 1.5 shows the eleven

=(a2,N2—a,;N,)+(a3,N3—a,3Nl). (1.3)

B e gt




1.3 DIRECTIONAL DIAGRAMS AND STEADY-STATE POPULATIONS 9

FIG. 1.4. Partial diagrams for Fig. 1.3b. I, I1, 111, and IV are referred to in text (Chap-
ter 2).

directional diagrams for this state, as obtained from Fig. 1.4. The recipe for
introducing arrows is simple: all connected paths in Fig. 1.5 are made to
“flow” toward and end at vertex 2. It will be noted that in the flow toward
the ultimate vertex (vertex 2 in Fig. 1.5), “streams” may converge but they
never diverge (for this would require a cycle in the partial diagram).

There is a set of eleven directional diagrams for each of the five states. In
each case, all streams flow toward—and end at—the particular state being
considered.

Now each directional line or arrow in Fig. 1.5 corresponds to a rate
constant; the key for assigning rate constants to directional lines is provided

Qs dg3a31 Q17 @32%35 X544z

FIG. 1.5 Directional diagrams for state 2. Algebraic values of first and third directional
diagrams are given.



