

Data Structures

for Personal Computers

YEDIDYAH LANGSAM
MOSHE J. AUGENSTEIN
AARON M. TENENBAUM

Department of Computer and Information Science
Brooklyn College of The City University of New York

-

PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey 07632

lemly of Cong Cataloging in Publication Dats
Langaam, Yedidysh _(date) r
Data]

for p

Bibliography: p.

Includes index.

1. Data (Comnp science) 2. Mi
—Programming. 3. Basic (Compmerpwlmhn‘ugc)
1. Augenstein, Moshe (date). II. Tenenbaum, Aaron M.
M. Tite.

QA76.9.D35L.36 1985 001.64'2 84-3326
ISBN 0-13-196221-3

Editorialiproduction supervision and interior design: Nancy Mi}h;inow o
Cover design: Lundgren Graphics, Lid.
Manufacturing buyer: Gordon Osbourne

¥

et L SRR
. A

e

"© 1985 by Prentice-Hall, Inc., Er.zlewood Cliffs, New Jersey 07632 ;

All rights reserved. No part of this bouk may be’
reproduced. in any form or by any means.’
without permission in writing from the publisher.
Printed in the Uniled States of America

10987654321

ISBN 0-13-196221-3

N

Apple Computer and Applesoft are trademarks of Apple Computer Company.

BASIC-80 and Softcard are trademarks of Microsoft Company.
IBM PC is a trademark of Intemnational Business Machines Corporation.
TRS-80 and Radio Shack are trademarks of Tandy Corporation.

Prentice-Hall Intemnational, Inc., London

Prentice-Hall of Australia Pty. Limited, Sydney

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro .5,
Prentice-Hall Canada Inc., Toronto . IR

Prentice-Hall of India Private Limited, New Delhi Ttk e

Prentice-Hall of Japan, Inc.. Tokyo L,))
Frentice-Hall of Southeast Asia Pte. Ltd.. Smgapore v e
Whitehall Books Limited, Wellington, New Zealand

P e S pp———

Preface

This text is designed with two audiences in mind. One group consists of pro-
grammers who have already acquired a basic level of proficiency in program-
ming, preferably in BASIC. Such skills may have been acquired by reading an
introductory text in BASIC programming complemented by some hands-on expe-
rience on a personal computer. The programming skills acquired at this level may
be disorganized and the programmer may realize that in order to solve more in-
volved and complex problems it is necessary to learn about more high-level pro-
gramming techniques. The subject of data structures coupled with enhanced
programming skills is the next step in the pursuit of these high level skills.

A second group consists of those who are studying computer science in an
academic environment. With the proliferation of personal computers, computer
science education is becoming more popular even in schools which previously
had only one or two introductory courses in programming. Although this descrip-
tion will typically fit two-year schools or high schools, a number of four-year
colleges with small budgets for computing also fit into this category. BASIC is
frequently the language used at such institutions.

The purpose of this book is to introduce the reader to the elementary con-
cepts of data structures in conjunction with reinforcement of high-level program-
ming skills.

For several years, we have taught a course in data structures to students who
have had a semester course in high-level programming and a semester course in
assembly language programming. We found that a considerable amount of time
was spent in teaching programming techniques because the students had not had
sufficient exposure to programming and were unable to implement abstract struc-

xii

Preface xiii

tures on their own. The brighter students eventually caught on to what was being
done. The weaker students never did. Based on this experience, we have reached
the firm conclusion that a first course in data structures must go hand in hand
with a second course in programming. This text is a product of that conviction.

The text introduces abstract concepts, shows how these concepts are useful
in problem solving and then shows how the abstractions can be made concrete by
using a programming language. Equal emphasis is placed on both the abstract
and the concrete versions of a concept, so that the student learns about the con-
cept itself, its implementation, and its application.

The language used in this book is BASIC. Although there are several lan-
guages which support good programming techniques and are better than BASIC
for implementing abstract data structures, we have selected BASIC for several
reasons. BASIC is the most widely-used high-level language today because of its
widespread accessibility on personal computers. Within nonacademic circles,
there is a growing interest in computer science. Many people who have an inter-
est in data structures, but without programming skills in another high level lan-
guage, have few sources to which to turn. Furthermore, although BASIC has
become far from universally accepted (and will probably never be) within aca-
demic circles, its use in recognized computer science programs is spreading (par-
ticularly, as we mentioned earlier, at smaller institutions). Although BASIC has
been criticized as being very problem-prone, it can be used correctly. In Chapter
2 we introduce a consistent approach to BASIC and continue to emphasize that
approach throughout the remainder of the book. The only prerequisite for stu-
dents using this book is the equivalent of a one-semester course in programming
in BASIC. Readers who are not familiar with BASIC are referred to the Bibliog-
raphy for a selection of introductory texts in the language.

Chapter 1 is an introduction to data structures. Section 1.1 introduces the
concept of an abstract data structure and the concept of an implementation. Sec-
tion 1.2 introduces arrays—their implementation as well as their application.
Section 1.3 introduces data aggregates and how they can be implemented in
BASIC.

Chapter 2 introduces and discusses structured programming techniques in
BASIC and their algorithmic counterparts. These techniques present a style of
programming that is used throughout the remainder of the text.

Chapter 3 discusses stacks and their BASIC implementation. Because this is
the first new data structure introduced, considerable discussion of the pitfalls of
implementing such a structure is included. Section 3.4 introduces postfix, prefix,
and infix notations.

Chapter 4 introduces queues and linked lists and their implementations us-
ing an array of available nodes.

Chapter 5 discusses recursion and its applications. Because recursion is not
implemented on most versions of BASIC, methods of simulating recursion are
presented as well.

xiv Preface
Chapter 6 discusses trees and Chapter 7 introduces graphs.
Chapter 8 covers sorting and Chapter 9 covers searching.
At the end of the book, we have included a bibliography listing a selected

set of texts in the areas of BASIC programming and data structures, to which the -

reader is referred for further reading. In a one-semester course, Chapter 7 and
parts of Chapters 1, 2, 6, 8, and 9 can be omitted.

The text is suitable for course I1 of Curriculum 68 (Communications of the
ACM, March 1968), courses UC1 and UCS8 of the Undergraduate Programs in
Information Systems (Communications of the ACM, Dec. 1973) and course CS2
and parts of courses CS7 and CS13 of Curriculum 78 (Communications of the
ACM, March 1979). In particular, the text covers parts or all of topics P1, P2,
P3, P4, P5, 82, D1, D2, and D6 of Curriculum 78.

Algorithms (which we introduce in Chapter 2) are presented as intermediar-
ies between English language descriptions and BASIC programs. They are writ-
ten in a style consisting of high-level constructs interspersed with English. These
algorithms allow the reader to focus on the method used to solve a problem with-
out concern about declaration of variables and the peculiarities of a real language.
In transforming an algorithm into a program, we introduce these issues and point
out the pitfalls which accompany them.

The indentation pattern used for BASIC programs and algorithms is based
on a format introduced in Chapter 2 which we have found to be a useful tool in
improving program comprehensibility. We distinguish between algorithms and
programs by presenting the former in lower case italics and the latter in upper
case roman.

Most of the concepts in the text are illustrated by several examples. Some of-
these examples are important topics in their own right (e.g., postfix notation,
multi-word arithmetic, etc.) and may be treated as such. Other examples illus-
trate different implementation techniques (such as sequential storage of trees).
When using this text for a one-semester course, the instructor is free to cover as
many or as few of these examples as he or she wishes. Examples may also be
assigned to students as independent reading. It is anticipated that an instructor
will be unable to cover all the examples in sufficient detail within the confines of
a one- or two-semester course. We feel that, at the stage of student’s develop-
ment for which the text is designed, it is more important to cover several exam-
ples in great detail than to cover a broad range of topics cursorily.

The exercises vary widely in type and difficulty. Some are drill exercises to
insure comprehension of topics in the text. Others involve modifications of pro-
grams or algorithms presented in the text. Still others introduce new concepts and
are quite challenging. Often, a group of successive exercises includes the com-
plete development of a new topic which can be used as the basis for a term pro-
ject or an additional lecture. The instructor should use caution in assigning
exercises so that an assignment is suitable to the student’s level. We consider it
imperative for students to be assigned several (from five to twelve, depending on
difficulty) programming projects per semester. The exercises contain several pro-

Preface xv
jects of this type. The instructor may find a great many additional exercises and
projects in the Exercise Manual of one of our earlier texts, Data Structures and
PL/I Programming (Prentice-Hall, 1979). Although many of the exercises in that
manual are presented using PL/I, they can readily be recast in a BASIC setting.
The Exercise Manual for Data Structures and PL/I Programming is available
from the publisher.

One of the most difficult choices which had to be made in writing this book
was the question of which BASIC dialect to use. In order to present programs
which would run on a wide variety of personal computers, it is desirable to
choose the *‘lowest common denominator’’ of all commonly available BASIC
dialects. On the other hand, by choosing a very small proper subset of BASIC.
our programs would not be able to take advantage of ‘‘standard’’ BASIC features
provided by the vast majority of personal computers. We decided to ensure that
the programs in this book would run under each of Radio Shack BASIC Level II.
Microsoft BASIC-80, and BASIC for the IBM PC. Of these three, Radio Shack
BASIC Level 1l is fairly close to being a proper subset of the other two, and yet
provides all the features which we deemed essential. One of the limitations of
Radio Shack BASIC Level 11 is that it distinguishes variables by only the firsi
two characters of their names and forbids the use of embedded reserved words.
The same restriction applies to Applesoft BASIC. We have taken great pains to
use meaningful variable names and yet to abide by these limitations. Naturally, in
those versions of BASIC which do not have these limitations, the programmer is
free to substitute somewhat less awkward variable names. We have deliberately-
not taken advantage of those advanced features (e. g., the WHILE-WEND con-
struct, the MOD built-in function, etc.) of Microsoft BASIC-80 and BASIC for
the IBM PC that are not supported by the majority of BASICs currently available
for personal computers. However, we do introduce these constructs in Chapter 2
and do use them in presenting algorithms.

One feature which we felt we could not omit was the ELSE clause for the
IF-THEN construct. Without the availability of the IF-THEN-ELSE, programs
would become unwieldy and their pedagogical value would be greatly dimin-
ished. Unfortunately, Applesoft BASIC does not support the ELSE clause. The
Applesoft programmer may simulate ELSE clauses by methods presented in
Chapter 2. We also use the DEF statement to declare variable types rather than
relying on the special type symbcls. This is also invalid in Applesoft BASIC but
can easily be remedied by inserting the type symbols. All other features used
throughout this book are also valid in Applesoft BASIC. Each program (or sub-
routine) in this book has been tested on a Radio Shack Model III using BASIC
Level II, on an Apple II Plus equipped with a Softcard using Microsoft BASIC-
80, and on an IBM PC using cassette BASIC. We wish to thank Imran Khan,
Linda Laub, Diana Lombardi, Joel Plaut, and Chris Ungeheuer for their invalu-
able assistance in this task. Their zeal for the task was above and beyond the call
of duty and their suggestions were always valuable. Of course, any errors that
remain are the sole responsibility of the authors.

xvi : . . . Preface
We have prepared two sets of diskettes containing the BASIC source code
of programs and subroutines in the text. One set of diskettes was prepared under
BASIC-80 using the Microsoft CP/M Softcard for the Apple II Plus and the sec-
opd set using IBM PC BASIC. These diskettes are d¥ailable from the publisher
using the tear-off card bound into the book. :

Linda Laub, Carl Markowitz, and Chris Ungeheuer spent many hours typ-
ing and correcting the original manuscript. Their cooperation and patience as we
‘continually changed our minds about additions and deletions are most sincerely
appreciated. We wish to single them out for their extraordinary enthusiasm and
dedication in all phases of the book’s production, for which we are deeply grate-
ful.

We would like to thank Maria Argiro, Mirrel Eissenberg, Beverly Heller,
Gun Kim, Amalia Kletsky, Sholom Krischer, Linda Laub, Diana Lombardi,
Chaim Markowitz, Joel Plaut, Barbara Reznik, Chris Ungeheur, and Shirley Yee
for their invaluable assistance.

The staff of the City University Computer Center deserves special mention.
They were extremely helpful in assisting us in using the excellent facilities of the
Center. The same can be said of Julio Berger and Lawrence Schweitzer and the
rest of the staff of the Brooklyn College Computer Center.

We would like. to thank the editors and staff at Prentice-Hall and especially
the reviewers for their helpful comments and suggestions.

Finally, we thank our wives, Vivienne Langsam, Gail Augenstein, and Mir-
iam Tenenbaum, for their advice and encouragement during the long and arduous
task of producing such a book.

Yedidyah Langsam
Moshe Augenstein
Aaron Tenenbaum

Contents “

PREFACE xii
1 INTRODUCTION TO DATA STRUCTURES 1

1 Information and Meaning /
Binary and Decimal Integers 3
Real Numbers 5
Character Strings 6
Hardware and Software 7
The Concept of Implementation 9
An Exampl€ 10 .
Exercises 15

2 Arrays in BASIC 17
Using One-Dimensional Arrays 18
Implémenting One-Dimensional Arrays 20
Two-Dimensional Arrays 22
Multi-Dimensional Arrays 25
Handling Subscript Errors 28
Exercises 30

3 Aggregating Data in BASIC 32
Representing Other Data Structures 34
Rational Numbers 34
Muiti-Dimensional Arrays 39
Exercises 41

vi Contents

2 PROGRAMMING IN BASIC oy ' 43

1 BASIC for Microcomputers 43
Interpreters and Compilers 43
Lines, Statements, and Remarks 45 ,
Variables in BASIC 45
Primitive Data Types 46
Pseudocode 48
Flow of Control 50
Sequential Flow 51
Conditional Flow 5/

Logical Data 56
Repetitive Flow 58
Subroutines 62
Parameters in BASIC 65
Functions in BASIC 68
Exercises 70

2 Programming Techniques 74
Program Development 74
Formulating the Problem 74
Developing an Algorithm 76
Choosing Data Structures 77
Program Layout 81
Meaningful Variable Names 82
Documentation 83
Avoiding Needless Branches 84
Program Readability 86
*‘Clever’’ Code 86
Signaling the End of Data 87
Conclusion 88
Exercises 89

3 Program Reliability 9/

Program Correctness 92

Testing and Debugging 94

Syntax and Execution Errors 95
Reusing Variable Names 95
Counting Errors 97

Accuracy of Numerical Results 98
Testing 99

Efficiency 102

Exercises 106

 rs

Contents

3 THE STACK

1 Definition and Examples 108
Primitive Operations /12
An Example /73
Exercises 117

2 Representing Stacks in BASIC /78
Testing for Exceptional Conditions 12/
Implementing the push Operation 123
Exercises 126

3 An Example: BASIC Scope Nesting 127
Statements of Problem 127
Algorithm for Solution /30
Refining the Outline 13/
The Complete Program /33
Exercises 135

4 An Example: Infix, Postfix, and Prefix 136
Basic Definitions and Examples 136
Evaluating a Postfix Expression /39
Program to Evaluate a Postfix Expression 140
Limitations of the Program 143
Converting an Expression from Infix to Postfix 143
Program to Convert an Expression from Infix to Postfix 148
Exercises 151

4 QUEUES AND LISTS

1 The Queue and Its Sequential Representation 154
The insert Operation 160
An Alternative BASIC Representation 162
Exercises 162

2 Linked Lists /64 .
Inserting and Removing Nodes from a List 165
Linked Implementation of Stacks 169
The getnode and freenode Operations 170
Linked Implementation of Queues 173
The Linked List as a Data Structure /74
Examaples of List Operations 177
Lists in BASIC 178
Queues as Lists in BASIC 182 ,
Example of a List Operation in BASIC 183
Noninteger Lists 184
Header Nodes 185
Exercises 187

vii

108

154

viii

3 An Example: Simulation Using Linked Lists /89
Exercises 196
4 Other List Structures 200
Circular Lists 200
The Stack as a Circular List 200
The Queue as a Circular List 202
Primitive Operations on Circular Lists 202
The Josephus Problem 204
Header Nodes 206
Addition of Long Positive Integers Using Circular Llsts 207
Doubly Linked Lists 210
Addition of Long Integers Using Doub]y Linked Lists 212
Multilists 217
Exercises 220

6 RECURSION

1 Recursive Definition and Processes 222
The Factorial Function 222
Multiplication of Natural Numbers 226
The Fibonacci Sequence 226
The Binary Search 228
The Towers of Hanoi Problem 231
Properties of Recursive Definitions or Algorithms 236
Exercises 237
2 Basic Implementation of Recursive Algorithms 238
Factorial in BASIC 241
The Call/Return Mechanism 243
The Towers of Hanoi in BASIC 238
Improving the Simulating Routines 257
Eliminating GOTQS 252
Simplifying Towers of Hanoi 254
Additional*Comments 256
Exercises 258
3 Writing Recursive Programs 260
Translation from Prefix t6 Postfix Using Recursion 262
Conversion Programs in BASIC 265
Recursive List Processing 269
Recursive Chains 272
Recursive Definition of Algebraic Expressions 273
Exercises 280

N

Contents

222

e AR

Contents

8 TREES

1 Binary Trees 284 w
H Operations on Binary Trees 289
! Applications of Binary Trees 290

Exercises 296

2 Binary Tree Representations 297
Node Representation of Binary Trees 297
Almost Complete Array Representation of Binary Trees 301
Choosing a Binary Tree Representation 305
Traversing Binary Trees 306

+ Threaded Binary Trees 308

Heterogeneot’s Binary Trees 312
Exercises 216

3 An Example: The Huffman Algorithm 318
Exercises 324

4 Representing Lists as Binary Trees 325
Finding the kth Element of a List 327
Deleting an Element 329
Implementing Tree-Represented Lists in BASIC 333
Constructing a Tree-Represented List 335
The Josephus Problem Revisited 338
Exercises 339

5 Trees and Their Applications 340
BASIC Rgpresentations of Trees 342
Tree Traversals 344
General Expressions as Trees 347
Other Tree Operations 354
Exercises 356)

6 An Example: Game Trees 358
Exercises 368

7 GRAPHS AND THEIR APPLICATIONS

1 Graphs 370
BASIC Representation of Graphs 373
Path Matrices 375
Ttansitive Closure 378
Warshall’s 4lgorithm 380
Exercises 382

2 A Flow Problem 384
Improving a Flow Function 386
An Example 390
The Algorithm and Program 392
Exercises 396

370

x Contents

3 The Linked Representation of Graphs 397
An Application to Scheduling 403
The BASIC Program 407
Improving the Program 4/0
Exercises 415

8 SORTING 419

1 General Background 419
Efficiency Considerations 42/
Exercises 426

2 Exchange Sorts 427
Bubble Sort 427
Quicksort 430
Exercises 437

3 Selection and Tree Sorting 439
Straight Selection Sort 439
‘Binary Tree Sorts 440
Tournament Sort 442
Heapsort 449
Exercises 456

4 Insertion Sorts 458
Simple Insertion 458
Shell Sort 459
Address Calculation Sort 462
Exercises 465

5 Merge and Radix Sorts 467
Merge Sorts 467
Radix Sort 470
Exercises 474

9 SEARCHING ’ 477

I BASIC Search Techniques 477
Sequential Searching 478
Efficiency of Sequential Searching 481
Reordering a List for Maximum Search Efficiency 481!
Searching an Ordered Table 484 R
The Indexed Sequential Search 484
The Binary Search 488
Exercises 489

Contents ' xi

2 Tree Searching 492
Inserting into a Binary Search Tree 493
Deleting from a Binary Search Tree 496
Efficiency of Binary Tree Search 498
Balanced Trees 507
Digital Search Trees 510
Tries 513
.Exercises 516

3 Hashing 521
Resolving Hash Clashes by Open Addressing 524
Resolving Hash Clashes by Chaining 526
Choosing a Hash Function 529
Exercises 530

4 Examples and Applications 537
Example 9.4.1: The Huffman Algorithm 532
Exercises 535
Example 9.4.2: A Scheduling Problem 536
Exercises 540 ' .
Example 9.4.3: An Airline Reservation System 540
Exercises 547

BIBLIOGRAPHY 548

INDEX o 551

Introduction to Data Structures

A computer is a machine that manipulates information. The study of computer
science includes the study of how information is organized in a computer, how it
can be manipulated, and how it can be utilized. Thus it is extremely important for
a student of computer science to understand the concepts of information organi-
zation and manipulation in order to continue study of the field.

- 1. INFORMATION AND MEANING

If computer science is fundamentally the study of information, the first question
that arises is: What is information? Unfortunately, although the concept of infor-
mation is the bedrock of the entire field, this question cannot be answered pre-
cisely. In this sense, the concept of information in computer science is similar to
the concepts of point, line, and plane in geometry—they are all undefined terms
about which statements can be made but which cannot be explained in terms of
more elementary concepts.

In geometry, it is possible to talk about the length of a line despite the fact
that the concept of a line itself is undefined. The length of a line is a measure of
quantity. Similarly, in computer science, we can measure quantities of informa-

tion. The basic unit of information is the bit, whose value asserts one of two-

mutually exclusive possibilities. For example, if a light switch can be in one of
two positions but not in both simultaneously, the fact that it is either in the ‘‘on’’
position or the *‘off”” position is 1 bit of information. If a device can be in more
than two possible states, the fact that it is in a particular state is more than 1 bit of

-

Iy

Switch |

OFF
(a) One switch (two possibilities).

Switch | Switch 2

Cov] [o]
(o] (o)
o] (o]

(b) Two switches (four possibilities).

Switch | Switch 2 Switch 3

[orr | [Lorr | |

Lo | [orr | |

Lo | [ov | |

Lo | Lo | |

Lo | [lorr | [orr |
|
I
|

[on | [orr |
[on] [ov]
| ov | | on |

(c) Three switches (eight possibilities). Figure 1.1.1

