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PREFACE

THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology. It is intended to be used both as a text and as a reference. Particular
emphasis has been placed on naturality, and the book might well have been
titled Functorial Topology. The reader is not assumed to have prior knowledge
of algebraic topology, but he is assumed to know something of general topology

~and algebra and to be mathematically sophisticated. Specific prerequisite
material is briefly summarized in the Introduction.

Since Algebraic Topology is a text, the exposition in the earlier chapters
is a good deal slower than in the later chapters. The reader is expected to
develop facility for the subject as he progresses, and accordingly, the further
he is in the book, the more he is called upon to fill in details of proofs.
Because it is also intended as a reference, some attempt has been made to
include basic concepts whether they are used in the book or not. As a result,
there is more material than is usually given in courses on the subject.

The material is organized into three main parts, each part being made up
of three chapters. Each chapter is broken into several sections which treat
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individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamenta! group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.

Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility.

The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chapter Eight, and some computations of homotopy
groups of spheres are given in Chapter Nine. Main emphasis is on the appli-
cation to geometry of the algebraic tools introduced earlier.

There is probably more material than can be covered in a year course.
The core of a first course in algebraic topology is Chapter Four. This contains
elementary facts about homology theory and some of its most important
applications. A satisfactory one-semester first course for graduate students
can be based on the first four chapters, either omitting or treating briefly
Secs. 5 and 6 of Chapter One, Secs. 7 and 8 of Chapter Two, Sec. 8 of
Chapter Three, and Sec. 8 of Chapter Four. A second one-semester course
can be based on Chapters Five, Six, Seven, and Eight or on Chapters Five,
Seven, Eight, and Nine. For students with knowledge of homology theory and
related algebraic concepts a course in homotopy theory based on the last
three chapters is quite feasible.

Each chapter is followed by a collection of exercises. These are grouped
into sets, each set being devoted to a single topic or a few related topics.
With few exceptions, none of the exercises is referred to in the body of the
text or in the sequel. There are various types of exercises. Some are examples
of the general theory developed in the preceding chapter, some treat special
cases of general topics discussed later, and some are devoted to topics
not discussed in the text at all. There are routine exercises as well as more
difficult ones, the latter frequently with hints of how to attack them. Occa-
sionally a topic related to material in the text is developed in a set of exercises
devoted to it.

Examples in the text are usually presented with little or no indication of
why they have the stated properties. This is true both of examples illustrating
new concepts and of counterexamples. The verification that an example has
the desired properties is left to the reader as an exercise.

The symbol ® is used to denote the end of a proof. It is also used at the
end of a statement whose proof has been given before the statement or which
follows easily from previous results, Bibliographical references are by footnotes
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in the text. Items in each section and in each exercise set are numbered con-
secutively in a single list. References to items in a different section are by
triples indicating, respectively, the chapter, the section or exercise set, and the
number of the item in the section. Thus 3.2.2 is item 2 in Sec. 2 of Chapter
Three (and 3.2 of the Introduction is item 2 in Sec. 3 of the Introduction).

The idea of writing this book originated with the existence of lecture
notes based on two courses I gave at the University of Chicago in-1955. It is
a pleasure to acknowledge here my indebtedness to the authors of those notes,
Guido Weiss for notes of the first course, and Edward Halpern for notes of
the second course. In the years since then, the subject has changed substan-
tially and my plans for the book changed along with it, so that the present
volume differs in many ways from the original notes. '

The final manuscript and galley proofs were read by Per Holm. He made
a number of useful suggestions which led to imnprovements in the text. For
his comments and for his friendly encouragement at dark moments, I am
sincerely grateful to him. The final manuscript was typed by Mrs. Ann
Harrington and Mrs. Ollie Cullers, to both of whom I express my thanks for
their patience and cooperation.

I thank the Air Force Office of Scientific Research for a grant enablmg
me to devote all my time during the academic vear 1962-63 to work on this
book. I also thank the National Science Foundation for supporting, over a
period of years, my research activities some of which are discussed here.:

Edwin H. Spanier
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THE READER OF THIS BOOK IS ASSUMED TO HAVE A GRASP OF THE ELEMENTARY
concepts of set theory, general topology, and algebra. Following are brief
summaries of some concepts and results in these areas which are used in this
book. Those listed explicitly are done so either because they may not be
exactly standard or because they are of particular importance in the subse-
quent text.

l SET THEORY!

The terms “set,” “family,” and “collection” are synonyms, and the term
“class” is reserved for an aggregate which is not assumed to be a set (for
example, the class of all sets). If X is a set and P(x) is a statement which is
either true or false for each element x € X, then

1 As a general reference see P. R. Halmos, Naive Set Theory, D. Van Nostrand Company, Inc.,
Princeton, N.J., 1960.
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{x € X| P(x)}

denotes the subset of X for which P(x)} is true.
K J = {j} is a set and {A;)} is a family of sets indexed by J, their union is

denoted by U A; (or by U; . A;), their intersection is denoted by M A; (or by
Njes Aj), their cartesian product is denoted by X A; (or by X;.s4;), and
their set sum (sometimes called their disjoint union) is denoted by V A; (or
by V,.sA)) and is definedby V A; = U (; X Aj). Incase] = (1,2, . . . ,n},
we also use the notation A, U A U .- U A, A{ N AN ... N A,
A; X Az X --- X Ag, and A; v Apv .- Vv A, respectively, for the union,
intersection, cartesian product, and set sum.

A function (or map) f from A to B is denoted by f: A — B. The set of all
functions from A to B is denoted by B4. If A’ C A, there is an inclusion map
i: A’ > A, and we use the notation i: A’ C A to indicate that A’ is a subset of
A and i is the inclusion map. The inclusion map from a set A to itself is called
the identity map of A and is denoted by 1,. If J' C J, there is an inclusion

“map
i,;': V Aj C \/ Aj
. jed jed

An equivalence relation in a set A is a relation ~ between elements of A
which is reflexive (that is, @ ~ a for all a € A), symmetric (that is,.a ~ a’
implies a” ~ a for a, @’ € A), and transitive (that is, 4 ~ @ and @’ ~ a”
imply a ~a” for a, a’, a”’ € A). The equivalence class of a € A with
respect to ~ is the subset {a’ € A{a ~ a’}. The set of all equivalence classes
of elements of A with respect to ~ is denoted by A/~ and is called a
quotient set of A. There is a projection map A — A/~ which sends a € A to
its equivalence class. If J'is a nonempty subset of J, there is also a projection map

: X Ay
pre XA = KA

(which is a projection map in the sense above).

Given functions f: A — B and g: B — C, their composite g ° f (also de-
noted by gf) is the function from A to C defined by (g ° f)(a) = g( fla)) for
ac A f A" CAand f: A— B, the restriction of f to A’ is the function
flA’t A" > B defined by (f| A')a") = fla’) for @’ € A’ (thus f| A’ = f° i,
where i: A’ C A), and the function f is called an extension of f| A’ to A.

An injection (or injective function) is a function f: A — B such that
‘flar) = flag) implies a, = a; for ay, az € A. A surjection (or surfective
function) is a function f: A — B such that b € B implies that there is a € A
with fla) = b. A bijection (also called a bijective function or a one-to-one
correspondence) is a function which is both injective and surjective.

A partial order in a set.A is a relation < between elements of A which is
reflexive and transitive (note that it is not assumed that 2 < @’ and 2’ < a
imply a = a'). A total order (or simple order) in A is a partial order in A such
that for a, ¢’ € A either a < @’ or @’ < a and which is antisymmetric
(that is, a < 4’ and @’ < a imply a = a'). A partially ordered set is a set with
a partial order, and a totally ordered set is a set with a total order.



SEC. 1| SET THEORY 3

I zorN's LEMMma A partially ordered sct in which every simply ordered
subset has un upper bound contains maximal elements.

A directed set A is a set with a partial-order relation < such that for
a, B€ A there is y € A with a <y and B < v. A direct system of sets
{A°f.8} consists of a collection of sets {A“} indexed by a directed set
A = {a} and a collection of functions f,#: A= — AS for every pair a < Bsuch
that

(@) fu" = 140: A* C Aaforall a € A
(b) fot = fa¥ e fuf: A2 > Avfora < B < yin A

The direct limit of the direct system, denoted by lim. {A°}, is the set
of equivalence classes of \V Ae with respect to the equivalence relation
a® ~ ab if there is y with a < y and 8 < y such that f,7a® = f,a?. For each
a there is a map i,: Ac — lim_. {A°}, and if a < B, then i, = iz ° f,F.

2 Given a direct system of sets {A*f,#} and given a set B and for every
a € A a function g,; A® — B such that g, = gg° .2 if a < B, there is
a unique map g: lim_, {A°} — Bsuch that g° i, = g, forall a € A.

3  With the same notation as in theorem 2, the map g is a bijection if and
only if both the following hold:

(@) B = U gi(A)

(b) g.(a*) = ga(a®) if and only if there is y with a < y and § < v such

that f,¥(a*) = fs¥(aP)

Let {A;} be a collection of sets indexed by J = {j}. Let A be the
collection of finite subsets of J and define a < B for o, BE€ A if a CB.
Then A is a directed set and there is a direct system {A®} defined by
A® = V., A; and if a < B, then f,f: Ac — A% is the injection map.
Let g,: A® — V; s A; be the injection map.

4  With the above notation, there is a bijection g: lim_. {A°} — VA
such that g ° i, = g, (that is, any set sum is the direct limit of its finite
partial set sums).

An inverse system of sets { A,.f.?} consists of a collection of sets {A,} in-
dexed by a directed set A = {a} and a collection of functions f.#: A, — A,
for a < B such that

(@) fo* =las A, CA fora€ A
B) for=flfofa Ay > A fora< B <yinA

The inverse limit of the inverse system, denoted by lim. {A,}, is the subset of
X A, consisting of all points (a,) such that if a'< B, then a, = f.fa,. For
each a there is a map p,: lim.. {A,} — A,, and if @ < B, then p, = f.? ° ps.

8  Given an inverse system of sets {A,,f.%} and given a set B and for every
a € A a function g, B — A, such that g, = f,f° gz if a@ < B, there is
a unique function g: B — lim.. {A,} such that g, = p.° g foralla € A,
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6  With the same notation as in theorem 5, the map g is a bijection if and
only if both the following hold:

(@) ga(b) = gu(b) for all « € A implies b = b’
(b) Given (a,) € X A, such that a, = ffas if a < B, there is b ¢ B
such that g,(b) = a, forall a € A

Let { A/} be a collection of sets indexed by J] = {j}. Let A be the collection
of finite nonempty subsets of J, and define a < B for a, BE€ A if a C B.
Then A is a directed set and there is an inverse system {A,} defined by
Ae = Xjea Al, and if a < B, fi: Ag — A, is the projection map. For each
a € Alet g,: Xj.r A7 — A, be the projection map.

7 With the above notation, there is a bijection g Xj.sA) — lim. {A,} '
such that g, = p, ° g (that is, any cartesian product is the inverse limit of its
finite partial cartesian products).

2 GENERAL TOPOLOGY!

A topological space, also called a space, is not assumed to satisfy any separation
axioms unless explicitly stated. Paracompact, normal, and regular spaces will
always be assumed to be Hausdorff spaces. A continuous map from one
topological space to another will also be called simply a map.

Given a set X and an indexed collection of topological spaces {X;};.s and
functions f;: X — X;, the topology induced on X by the functions { ¥;} is the
smallest or coarsest topology such that each f; is continuous.

1 The topology induced on X by functions { fi: X — X;} is characterized
by the property that if Y is a topological space, a function g: Y — X is
continuous if and only if f; ° g: Y — X; is continuous for each j € J.

A subspace of a topological space X is a subset A of X topologized by
the topology induced by the inclusion map A C X. A discrete subset of a
topological space X is a subset such that every subset of it is closed in X. The
topological product of an indexed collection of topological spaces {X;};es is
the cartesian product X X;, given the topology induced by the projection
maps p;: X X; — X; for j € J. If {X.}aca is an inverse system of topological
spaces (that is, X, is a topological space for a € A and f,#: X5 — X, is con-
tinuous for @ < B) their inverse limit lim, {X,} is given the topology induced
by the functions p,: lim. {X,} — X, for a € A.
Given a set X and an indexed collection of topological spaces {X;}jcs
and functions g;: X; — X, the topology coinduced on X by the functions {g;}
is the largest or finest topology such that each g; is continuous.

1 As general references see J. L. Kelley, General Topology, D. Van Nostrand Company, Inc.,
Princeton, N.J., 1955, and S. T. Hu, Elements of General Topology, Holden-Day, Inc.,
San Francisco, 1964.
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2  The topology coinduced on X by functions {g;: X; — X} is characterized
by the property that if Y is any topological space, a function f: X — Y is con-
tinuous if and only if f° gi: X; — Y is continuous for each j € J.

A quotient space of a topological space X is a quotient set X’ of X topol-
ogized by the topology coinduced by the projection map X — X’. If A C X,
then X/A will denote the quotient space of X obtained by identifying all of A
to a single point. The topological sum of an indexed collection of topological
spaces {X;};cs is the set sum V X;, given the topology coinduced by the
injection maps i;: X; — V X for j € J. If { X}, 4 is a direct system of topo-
logical spaces (that is, X* is a topological space for a € A and f,#: X° — X8 is
continuous for a < B) their direct limit lim_. {X=} is given the topology
coinduced by the functions i,: X* — lim. {X*} for a € A.

Let @ = {A) be a collection of subsets of a topological space X. X is said
to have a topology coherent with @ if the topology on X is coinduced from the
subspaces {A} by the inclusion maps A C X. (In the literature this topology
is often called the weak topology with respect to &.)

3 A necessary and sufficient condition that X have a topology coherent
with & is that a subset B of X be closed (or open) in X if and only if BN A
is closed (or open) in the subspace A for every A € @.

4 If @ is an arbitrary open covering or a locally finite closed covering of X,
then X has a topology coherent with Q.

8 Let X be a set and let { A;} be an indexed collection of topological spaces
each contained in X and such that for each j and ', A; N Aj is a closed (or
open) subset of A; and of A; and the topology induced on A; N A; from A;
equals the topology induced on A; N Aj- from Aj. Then the topology coin-
duced on X by the collection of inclusion,maps {A; C X} is characterized by
the properties that A; is a closed (or open) subspace of X for each j and X has
a topology coherent with the collection {A;}.

The topology on X in theorem 5 will be called the topology coherent
with {A;}. A compactly generated space is a Hausdorff space having a topology
coherent with the collection of its compact subsets (this is the same as what
is sometimes referred to as a Hausdorff k-space).

@ A Hausdorff space which is either locally compact or satisfies the first
axiom of countability is compactly generated.

7 If X is compactly generated and Y is a locally compact Hausdorff space,
X X Y is compactly generated.

If X and Y are topological spaces and A C X and B C Y, then (A;B)
denotes the set of continuous functions f: X — Y such that f(A) C B.
YX denotes the space of continuous functions from X to Y, given the compact-
open topology (which is the topology generated by the subbase {((K;U)},
where K is a compact subset of X and U is an open subset of Y). If A C X
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and B C Y, we use (Y,B)*¥- to denote the subspace of YX of continuous
functions f: X — Y such that f{A) C B. Let E: Y* X X — Y be the evalua-
tion map defined by E(fx) = f(x). Given a function g: Z —» Y%, the composite

ZX XEL yx  XE Y
is a function from Z X X to Y.

8 THEOREM OF EXPONENTIAL CORRESPONDENCE If X is a locally compact
Hausdor(f space and Y and Z are topological spaces, a map g: Z — YX-is con-
tinuous if and only if E° (g X 1): Z X X — Y is continuous.

® ExpPoNENTIAL LAW If X is a locally compact Hausdorff space, Z is
a Hausdorff space, and Y is a topological space, the function §: (YX)Z — Y2xX
defined by y(g) = E ° (g X 1) is a homeomorphism.

10 If X is a compact Hausdorff spdce and.Y is metrized by a metric d, then
YX is metrized by the metric d’ defined by

‘ (£ = sup (A firg(e) | 5 € X)

3 GROUP THEORY!

A homomorphism is called a monomorphism, epimorphism, isomorphism,
respectively, if it is injective, surjective, bijective. If {G;};cy is an indexed col-
lection of groups, their direct product is the group structure on the cartesian
product X G; defined by (g)(g) = (gig)- If (G.} is an inverse system of
groups (that is, G, is a group for each aand f,?: G5 — G, is a homomorphism
for & < B), their inverse limit lim.. { G,} (which is'a set) is a subgroup of X G,

Let A be a subset of a group G. G is said to be freely generated by A and A
is said to be a free generating set or free basis for G if, given any function
f: A — H, where H is a group, there exists a unique homomorphism ¢: G — H
which is an extension of f. A group is said to be free if it is freely generated
by some subset. For any set A a free group generated by A is a group F(A)
containing A as a free generating set. Such groups F(A) exist, and any two are
canonically isomorpbhic.
1 Any group is isomorphic to a quotient group of a free group.

A presentation of a group G consists of a set A of generators, a set

B C F(A) of relations, and a function f: A — G such that the extension of f
to a homomorphism ¢: F(A) — G is an epimorphism whose kernel is the nor-

1As a general reference for elementary group theory see G. Birkhoff and S. MacLane, A
Surcey of Modern Algebra, The Macmillan Company, New York, 1953. For a discussion of free
groups see R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn and Company,
Boston, 1963.



