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PREFACE

Elementary Numerical Analysis is geared toward college juniors, but begins easy
and slowly becomes more sophisticated. The standard topics of a course in nu-
merical analysis are presented, suitable for majors in engineering, science, and
mathematics. The minimal prerequisite is elementary calculus, including exposure
to series and partial derivatives. Basic concepts of Taylor series, used throughout
the text, are summarized in Appendix A. For Chapters 10 and 11 it helps, but is
not essential, to know a little about differential equations—about as much as might
be found in many calculus books.

An effort has been made to present the concepts as clearly (and simply) as
possible, with few formally stated and proven theorems. Instead of just presenting
the best method for a given task, we emphasize derivations and criteria for distin-
guishing between competing methods. A major goal in writing this text has been
to provide material that students can easily read, with ample exercises to reinforce
and extend what they are learning. Earlier versions and the current version here
have been class-tested for about eight years, with numerous improvements sug-
gested by students—and a few reviewers.

A decision instructors have to make concerning numerical analysis is which
computational aids are going to be emphasized: personal computers, mainframes,
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programmable calculators, scientific calculators, or none of these. And if a com-
puter is used, what language is allowed. This text is designed to be used with any
of these choicds. Most homework exercises can be worked with the aid of an
inexpensive scientific calculator, so the availability and use of a computer is not
essential. However, a decided programming slant can be imparted by assigning
some of the 90 Programming Projects listed throughout the sections of the text.
(See “Programming projects” in the Index for page numbers.) My preference is
to have students learn about important algorithms by trying them on a diverse set
of examples, especially with a computer doing all the calculations. As a help in
programming a calculator or computer, 18 programs—or parts of programs—are
given in Appendix B. These are written in BASIC, FORTRAN, or Pascal and are
unsophisticated, with little or no documentation. They ‘are not models of good
programs, just skeletons on which to build.

A different slant can be given to the course by assigning or allowing individual
students to study and report on some of the 69 (nonprogramming) Project Topics
listed with several of the sections. (See “Project topics” in the Index for page
numbers.) In this way, many methods asd related topics can be investigated that

- are not in this text or are only lightly touched upon.

As a quasi-practical challenge to the class, nontrivial problems can be indi-
vidually assigried: from Sections 3.8, 4.5, 8.4, and 10.8. Or these sections can be
omitted. ,

Thus, this text has been written with flexibility in mind. Instructors have much
freedomof choice not only as to the computational slant of the lectures, homework
assignments, and possible term projects, but also which sections to cover and
whether to use this text for one or two courses.

In total, there are eleven chapters plus an appendix on Taylor series and one
containing samplé' computer programs. For the most part, the chapters are inde-
pendent. Exceptions are that the concepts of error, discussed in Section 1.4, Gauss
elimination, discussed in Section 2.2, and Taylor series, in Appendix A, are referred
to in many of the chapters; parts of Chapters 4 and 5 depend on Chapter 3; and
Chapters 9, 10, and 11 loosely form a sequence concerning differential equations.

It is possible to teach a variety of courses from this text.. Four possible options
are:

1. A two-course sequence. Do (nearly) all sections, using Appendix A on Taylor
series together with Section 1.4 on error.

2. A single course emphasizing numerical solution of equations and curve fitting.
Do Appendix A and Chapters 1, 2, 3, 5, and 7. Chapters 4 and 6 are optional.
The major emphasis would be on iterative methods. My choice has been to
stress nonlinear equations, leaving numerical linear algebra for a separate ma-
trix/linear algebra course.

3. A single course emphasizing numerical calculus Do Appendix A, Section 1.4,
and Chapters 8 through 11. Chapters 6 and/or 7 could also be included, if time
permits. The major emphasns would be on selecting an optimal step size along
with the method.
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4. A single survey course. Sections selected are at the instructor’s discretion (but
adhering to the intercependency of a few chapters, as stated above). Students
could be assigned some sections to read on their own (without doing exercises),
such as 1.1, 1.2, 1.3, Appendix A, 1.5, and 2.1. The instructor could develop
Sections 1.4, 2.2, most of Chapter 3, any of the Sections 5.2 through 5.5, any
of the Sections 7.2, 7.4, or 7.5, Sections 8.1 through 8.4, Section 9.3, and as
much of Chapter 10 as desire and time permit.

A few facts and details. There are about 186 worked examples, 1122 exercises,
and 177 true—false statements among the Problems. Answers to most of the prob-
lems are in the Answers section at the back of the baok. Solutions are found in a
separate Instructor’s Solutions Manual, available from Prentice-Hall.

Numbers in brackets, especially after a name, generally refer to the Refer-
ences, pages 519 through 524. Important equations are numbered sequentially
within a section. For instance, ‘“7.4.6” refers to the sixth numbered equation of
Section 7.4 (which is the fourth section of Chapter 7). Examples are not numbered,
but those referred to later are given a letter designation, e.g., Example A The
end of a proof is denoted by a black square: H.

I thank the students in my classes who used earlier and rough versions of this
book and pointed out places where improvements might be made. Thanks also to
the (anonymous to me) reviewers, whose comments were generally helpful, and
to the staff at Reston Publishing Company, Inc.

W. Allen Smith
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Chapter 1

SOME BASIC CONCEPTS
OF NUMERICAL ANALYSIS



In this chapter we show how ‘“‘computational mathematics,” in which approxi-
mations are usually necessary, contrasts with ‘‘exact mathematics,” in which infinite
precision is assumed. You could call this contrast “applied math versus pure math,”
bet classical and modern applied math are not always identified with approximations
in computing.

Apart from blunders one might make, the computer or calculator is often
blamed for wrong answers. Errors do routinely appear when our numbers are
changed into a computer’s number system and also when changed back. However,
both the nature of the mathematical process involved and the (finite) number system
employed in the computations have much to do with errors in the output. Sources
of error thus include the type of formula or procedure being used—no matter how
the computations are carried out—as well as how the numbers are represented.

This chapter begins with two situations that do not invoive a computing device
directly, yet they have many of the qualitative features found in numerical work
performed on a high-speed digital computer. In Sections 1.3 and 1.4, we discuss
base two versus base ten representation and define what we mean by “‘error.” The
chapter concludes with some comments on the nature of numerical analysis and a
preview of important concepts discussed in the later chapters.

Except for Section 1.4, the entire chapter can be omitted in a one-semester
course.

Section 1.1
THE BLACK-BOX PROBLEM

In many problems we have a three-stage process: input (or data), generally con-
sisting of numbers, is given; computations are performed; an output or answer is
displayed. (See Figure 1.1.)

The input often comes from measurements and pertains to a mathematical
model of some situation we are investigating. We think of working within the model,
so we do not ask here whether it is valid or not. The input often contains errors
and approximations, some of which we might not be aware of. However, we control
the input, and can vary it if we wish.

The computations may well involve approximations, such as rounding num-
bers to ten decimal places, but hopefully these approximations are no worse than
those in the input. If we do not look at what the particular computations are, we
call the middle part a “black box.” (Knowing the nature of the computations, we
could call it a “white box™ or “clear box.”)

The output depends upon the input and the computations. In some situations \

Input —— Computations — Output

Figure 1.1 Simplified parts of a typical calculation

2



The Black-Box Problem 3

we seek any input that gives a prescribed output. In that case we generally do not
concern ourselves with what is inside the black box but consider only the input—
output relationship. For instance, the reader might think of the input as the amount
of deficit spending in the national budget and the output as the rate of unemploy-
ment; the black box would consist of political and economic factors. Or the input
could be the players you select from a team’s roster to play in an athletic contest,
such as a baseball game. The black box then involves the opponent’s play, random
errors, fatigue, luck, and so on, and the output consists primarily of the score, but
also statistics, injuries, added experience, and the like.

EXAMPLE: We can think of the black box as a mathematical function, with the
input as a domain value and the output as a range value. We are not told the
function; we just obtain the output for any given (perhaps somewhat restricted)
input.

Suppose we are to determine any input that results in an output of exactly

- 5. Without knowing anything else about the problem, what would be a reasonable
first input to try? One choice might be to always start with 0 or 1, no matter what
the output goal. But if the output goal is very small or very large, this is not quite
as reasonable ‘as first trying the otitput goal as the input. So we try 5. In other
words, we assume at first that the function is the identity function.

If you are told that an input of 5 results in an output of 5.2, what would you
try next? If you think the functioii is increasing (locally), then a smaller input would
be indicated, whereas if you think the function is decreasing, then a larger input
is indicated. You really need to try more inputs before distinguishing between these
cases. As for the second input, it really makes no difference in the long run what
you decide if nothing is known about the black box: Let us assume that the function
is increasing, so we try a smaller-input, say 4.

If you are now told that your input of 4 resulted in an output of 4.25, what
would you try next? Of course, you may already see a pattera and can hazard a
guess as to the function in the black box. Normally this is difficult, and in any case
we are not trying to determine the function, only some input that will give 5. After
two trials, we can work under the assumption that the function is linear. The
function need not even be continuous, of course, but at first we generally try to
be optimistic; if that fails, then we can later be more imaginative in our assumptions

.about the black box and in what we try for inputs.

If the function is linear between the inputs of 4 and 5, it is routine to calculate
the desired input that gives an output of 5 as follows. Set f(x) = a + bx. Solving
the two equations f(5) = a + 5b = 5.2 and f(4) = a + 4b = 4.25 simultaneously
for a and b gives f(x) = 0.45 + 0.95x. Then setting 0.45 + 0.95x equal to 5, we
get

= 4,7894736842105263157

iR

X =

LR e BaLs st

where the bar means that the 19 digits repeat forever. It may be that thie ‘black
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box will accept the ratio (91/19) input form, or it may require a decimal fraction
inpdt. If it does accept the ratio, it may immediately change it to decimal form
with a fixed number of places. If it is given a long string of digits in decimal form,
it might use only the first few and ignore the rest. We then have the possibility, if
not likelihood, of “roundoff error,” which occurs because we cannot retain more
than a certain number of digits, either in the input, the computations, or the output.
It might be, for example, that the black box will accept and work with numbers
having 50 digits, but at the end only print the six most significant digits (and keep
the rest a secret). Or it could work throughout with only six digits; we could not
easily distinguish between these cases.

Suppose we enter 91/19 for the input, or maybe the first 10 digits in its decimal
equivalent. (Note that roundoff error in any given input is not quite so critical
because we can later change the input.) If the output is now 4.9983, what should
we do? One possibility is to quit, saying that 4.9983 is close enough to 5. If we did
not quit, but performed more calculations similar to those in the preceding step,
we might get an output of, say; 4.9997. Should we quit now? Quite possibly no
input will give exactly 5, due to the method of computation (roundoff error, say)
or the nature of the black-box function itself. We should not expect to exactly
achieve our goal in a finite number of steps—think of adding one extra decimal
place for each input attempt. So normally we stop—i.e., “truncate” —after a
certain number of steps. What we then get is an approximation to the true input
(if indeed it exists), and the discrepancy is called a “truncation error.” Of course,
what we should really do is set a goal of getting within a small fixed interval about
5. For instance, we could accept any input whose output lies in the interval (4.9999,
5.0001). This would be called a “stopping criterion,” and it has a direct bearing
upon the truncation, and also roundoff, error in our result. Nearly always we shall
have several stopping criteria; for instance, we might also agree to stop after trying
1000 inputs if no other stopping criteria have been satisfied.

Incidentally, the function I used to generate the output numbers is f(x) = x
+ 1/x. Finding an x so that f(x) = § is equivalent to solving the quadratic equation
x2 — 5x + 1 = 0, whose roots are x = (5 + \/21)/2. Using decimal fraction or
ratio forms (i.e., rational numbers) for inputs, we could never find either of these
numbers x exactly. Hence, it is all the more reasonable to relax the requirement
that the output be exactly 5.

There are many cases in which the given approach to the black-box problem,
particularly the linear assumption after two trials, will fail, especially when random,
variable, or discontinuous effects arise. The goal of this sdction was not fo treat
this problem exhaustively but to show why approximations and stopping criteria
are often necessary.

Problems: Section 1.1

- 1. Suppose that in the black-box problem an input of 0 gives 7 and an input of 5
gives 9. What would be the best input to try under the linear assumption if the
output goal is 10? ’



Solving Quadratic Equations 5

(3]

. Same as problem 1, except that an input of 2 gives 5 and an input of 3 gives 2.

3. True or false?: If, in a black-box situation where the goal output is 2, an input
of 2 gave 1 and an input of 1 gave 3, then 1.5 would be a good input to try
next. .

4. (General Case) If the goal for an output is g, an input of x, gives an output of
¥1, and an input of x, gives an output of y, # y,, what would be a good trial
input for the third attempt?

§. Assume that a black box requires an ordered pair of numbers as input, as if it

were a real-valued function f(x,y).

(a) Under the linear assumption, how many trials are needed before an intel-
ligent guess can be made for the next?

(b) Suppose that our output goal is 10 and we have tried three different inputs.
(0, 1) gave 5, (1, 0) gave 15, and (1, 1) gave 12. If we next want to try
(2,y), what is a good choice for y under the linear assumption?

(General Case) Assume that a black box requires an ordered pair of numbers

as input, as if it were a real-valued function f(x,y). Suppose that our output

goal is g and so far three inputs (x;,y;) gave different outputs z,, i = 1,2, 3. If
the fourth input is to have the form (x,0), what is a good choice for x under
the linear assumption?

7. Ronald started with a number, raised x to this power, integrated with respect

to x from 0 to 1, subtracted his original number, raised e* to this power, took

a derivative with respect to x and evaluated it at x = 1, took a reciprocal, added

2, added his original number, took the natural logarithm, added 1, then rounded

off to five decimal places to get 0.50000.

Estimate what number Ronald started with by applymg the black-box
procedure, as follows:

(a) Derive the outcome associated with an input of 0.

(b) Derive the outcome associated with an input of 1.862.

(c) Use the formula from the answer to problem 4, or otherwise derive a good
input (estimate). You need not determine the associated output.

Section 1.2
SOLVING QUADRATIC EQUATIONS

In this section we see how “significance error” can greatly distort the output from
relatively simple formulas when equal or nearly equal quantities are subtracted.
Standardization of a problem, in this case a polynomial, will also be treated.

Elimination of Trivial Cases

The problem we wish to consider is finding the roots of the quadratic equation

6

ax> + bx + ¢ =0 - \ 1.2.1)

We could consider this to be a “white-box” problem, in which x stands for the
input and zero is the goal output. We would try an x and see how close ax? + bx
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+ c is to zero, remembering that there can be roundofherror in the computations.
We shall not treat the problem this way but instead use (quadratic) formulas for
x.

If it happens that a = 0, then equation 1.2.1 is at most linear (that is, bx +
¢ = 0) and is easy to solve. If the coefficient a is negative, we would multiply
equation 1.2.1 by —1 (which does not change the roots), to get an equation with
leading coefficient positive. So we shall assume that the coefficient of x? is positive.
If b = 0, the roots are simply +(—c/a)"2. If ¢ = 0, equation 1.2.1 factors to x(ax
+ b) = 0 and has roots x = 0 and x = —b/a. Henceforth, we shall assume that
abc # 0. One consequence of this is that x = 0 cannot be a root.

The Quadratic Formula(s)

By completing the square in equation 1.2.1 and then taking square roots and
solving for x, we find that

~b + VBT~ dac
X = -——Za———c (1.2.2)
and
-b - VB = dac
X = ————;——i (1.2.3)

are roots of equation 1.2.1. The numbers x, and x, are perhaps equal, perhaps
complex conjugates, or perhaps real and unequal. In exact mathematics these are
the answers and can be checked by substitution into the left of equation 1.2.1 to
give (exactly) zero. .

However, when we actually use these formulas we generally have to approx-
imate the numbers involved, especially when extracting square roots. This type of
approximation involves “‘roundoff error” and is directly related to the number of
digits we are forced (by calculator or mathematical table) or choose to retain in
any particular stage in the computations.

For this subsection we use “four-digit arithmetic”; that is, we carry at most
four digits in each number. (These are called significant digits, and the intent is to
use ‘“‘exponential” or “shientific”’ notation for the numbers, with powers of 10 not
counted in the four digits we carry. This notation will be further explained in the
next section.) For instance, 1/3 would become .3333, 617.0853 would become 617.1,
and .00345629 would become 0.003456. Leading zeroés, especially after a decimal
point, do not count as part of the four digits, but inside zeroes do; thus, 6.00737
would become 6.007. Of course, to shorten a long number to four digits, we round
off in a customary fashion: a digit 0 through 4 for the fifth digit means that the
first four digits as given are retained; otherwise, we increase the fourth digit by 1
and drop succeeding digits. (Other rounding schemes could also be used.)

A word of caution: using four-digit arithmetic, (0.3789)(0.2614) — 0.0990
would be calculated as 0.00004, not 0.0000446, the exact result. We would keep
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only four significant digits, not seven, in the product of the first two numbers; then
three of those four are subtracted away, so we get only one significant digit in the
result. {

This rounding of numbers to four significant digits introduces roundoff error,
but as we shall show, this can be minor compared to the effect of subtracting nearly
equal numbers, which eliminates most of the significant digits. If it is preferred,
6, 10, 12, or more digits can be kept in each number. We can get significance error
(loss of significant digits) no matter how many digits are retained. In other words,
no matter how many digits are retained for each number (short of an infinite
number), there will be quadratic equations for which equations 1.2.2 and 1.2.3 will
not give good approximations to the exact roots.

EXAMPLE: We consider solving the equatidn
X7 = 110 + 1 =0 '

It is known that one root is 0.009092, to four significant digits, (This might be
obtained by considering the problem to be a black-box problem, for example, and
happens to be what results when x2 is omitted in the equation—which is one way
to start the guessing process.) Let us see whether equation 1.2.2 or 1.2.3 gives us
this root. Remembeitlig that we can keep at most four significant digits in any
number, we would calculate the so-called discriminant to be

b* ~ dac = (—110)* — 4(1)(1) = 12,100 — 4 = 12,100

The last number comes from 12,096 rounded (up) to four digits. Using equations
1.2.2 and 1.2.3, we calculate possible roots to be

110 +
x1=—-2—119=110
and
110 —
X, = 02110=0

Of course, zero cannot be an exact root, and it can be a very misleading approx-
imation to the root 0.009092. (In Section 1.4 we shall discuss how to measure the
closeness of an approximation—in other words, how to measure the error.)

If we keep more than four significant digits, the subtraction to zero in cal-
culating x, disappears, and we can get closer to the correct root. However, for
each fixed number of digits you decide to keep in each number, someone else can
give a quadratic polynomial that will lead to the same qualitative situation. The
label “significance error” applies when the output of a ptocess has far fewer sig-
nificant digits than the input. In our case, x, has essentially zero significant digits

instead of four. :
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Alternative Formulas for the Roots

When significance error occurs, it will do so in only one of the two quadratic
formulas, 1.2.2 or 1.2.3. When b is positive, it will occur in x,, and when b is
negative (as in the preceding example), it will occur in x,. The best approach is to
use whichever formula that does not introduce significance error to get one root.
We can then use this answer in a new formula to get the second root.

We shall label the root obtained without significance error x4: If b is positive,
X, is calculated from equation 1.2.3, and if b is negative, x; is calculated from
equation 1.2.2. These two cases can be written as the one equation

py oL+ Vb7 - dac VZ:Z“‘“ (1.2.4)

X3 = —(sign
where sign b is +1 for b positive and —1 for b negative, and can be written as
b/|b| = |b|/b. (When b = 0, there is no need for an alternative formula, but if
completeness is desired, we can define sign 0 = 1.)

There will be no appreciable significance error in calculating x; because we
add | b| to the square root, never subtract. Except for minimal roundoff error, X3
will agree with one of the roots. But what about the other root? To determine the
second root, we use the fact that the product of the roots is ¢/a. The derivation is
as follows:

If x; and x, are roots, then a(x ~ x;)(x — x,) = O should be the original
equation 1.2.1. Expanding this, we get

ax? — a(x; + x)x + ax;x, = 0

Comparing this with ax> + bx + ¢ = 0, we see that ax;x, = c, so that x;x, =
c/a. Knowing x;, we get x, from

c
= o A (1.2.5)

Of course, it is also true that —a(x; + x,) = b, buttouse x, = —x; — b/a might
introduce significance error itself if x5 is sufficiently close to — b/a (which occurs
when ac is small compared to b?). : :

For the preceding example we would calculate x; to be (approximately) 110,
which is x;. Then, from equation 1.2.5, x, = 1/110 = 0.009, as compared to the
exact smaller root, 0.00909165 . . . . :

Checking and the Lack of Standardization

The obvious way to check possible roots (in the black-box sense) is to sub-
stitute into the left side of equation 1.2.1 to see how close we come to zeto. The
word “close” is not precise enough for mathematics, so this common-sense ap-
proach can run into trouble, as we shall see.



