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This book is based loosely on a series of lectures given at the DeVry Institute
of Technology to three classes:

T-3 Digital Systems I: 16-week beginning digital electronics course for
technicians '

T-4 Digital Systems II: 16-week intermediate digital systems course

T-5 Digital Systems III: 15-week final digital interface/microprocessor
course

These courses are taken in the students’ final three trimesters at DeVry.

Since the goal of the technician program is not to produce designers,
but individuals competent enough in the basic principles to service existing
equipment, the emphasis in these courses is threefold:

1. To present the vocabulary, so that the student can comprehend and use
the “buzzwords” of the field with a real understanding of the under-
lying concepts which these words embody. .

2., To explain the principles of operation of components used in existing
circuits and systems.

3. To describe safe handling procedures and failure modes for the logic de-
vices likely to be encountered in the field.

The reader should not need to begin at a reading or math level much
beyond high school. The average technician student in these courses has a

ix
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high school diploma or G.E.D., but is unlikely to have any junior-college
courses or a mathematical background much past basic algebra. Any mathe-
matical manipulations presented here will be no more complicated than
freshman high school algebra, although “logic” algebra may be different
from ‘‘arithmetic’’ algebra in nature.

A familiarity with basic electricity and transistor operation will be help-
ful, but not indispensable, to understanding the ideas presented here. Al-
though the students at DeVry begin digitdl with a background of a year’s
basic electronics courses, the same students could start the course from
“ground zero” without any real problems.

Patrick O’Connor
Chicago, Illinois
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Switch Circuits and Logic
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All digital logic circuits are switching circuits. Whatever else they may con-
tain, each circuit begins with a circuit component that does the same job asa
switch or pushbutton. At the beginning, we are going to look at circuits
made out of pushbuttons, and later, we’ll find out what types of switches are
really used in logic circuits.

Let’s begin with some basic ideas.

1.1 LOGIC STATES 1 AND 0

There are several schematic symbols for switches. The one you're probably
most familiar with looks like that shown in Figure 1-1.

Since there’s not much point to having a switch unless there’s some-
thing to switch on and off, we included a light at one end of the circuit and
a power supply (V+) at the other. The first piece of information that’s new
in this picture is the way we indicate whether the light is off or on. A light
that’s ON is marked with a 1 or with the word TRUE. When the light is
OFF, we’ve marked it with a O or the word FALSE. The use of the words
TRUE and FALSE makes sense if you remember that the thing at the end of
the wire is called a light bulb. When the bulb is operating normally, it’s
lighted. " That’s the TRUE condition for an operating light bulb. (Otherwise,
we’d have to call it a dark bulb!) When the bulb is not operating normally,
we indicate that with the word FALSE. Remember that anything, when it’s
operating normally, is TRUE, and when it’s not operating normally, it’s
FALSE,

8650148
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zZ
0 = False
A Off
Vi o« o Low
Not operated =
z
Y1 = True
ve A T High On
S L Figure 1-1 Output 1 and 0 condi-
Operated ) tions.
l . N.C.
O 00— __{ l.._.
f Normally open .
i N.O.
I Industrial
Momentary contact symbols
!
¥ N.C.
Normally closed —AHM Figure 1-2 Momentary-contact
N.C. switch symbols.

The numbers 1 and 0 are another way to indicate TRUE and FALSE,
For the light that is lighted, a 1 indicates that there’s something there. For
the light that’s not lighted, the 0 indicates that there’s nothing there. On the
diagram, there’s a third way of indicating what’s happening to the light bulb.
The word ”LOW’’ by the bulb that’s OFF and ‘“HIGH” by the bulb that’s
ON indicates what voltage is applied. A LOW voltage (in this case, nothing)
is applied to the bulb when the switch is open. The HIGH voltage is the
voltage of the power supply, connected to the light bulb when the switch is
closed. '

Now that we’ve seen the meaning of FALSE, LOW, and 0 and TRUE,
HIGH, and 1, let’s look at another type of switch (Figure 1-2).

1.2 SWITCH CIRCUIT REPRESENTATION FOR 1 AND 0
AS INPUTS AND OUTPUTS

The two switches in the picture are called normally open (N.O.) and nor-
mally closed (N.C.) types. Another name for switches of this type is mo-
mentary contact, or pushbuttons. The N.O. (normally open) pushbutton is
open until you push the button, then it closes and completes the connection.
The N.C. (normally closed) pushbutton is closed until you push the button
and break the connection. We’ve also included the industrial standard sym-
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2
Output
A K
input _L
+V —0 O
. \ Z 4
- . - - Output
. input A ‘
+V . .
R Figure 1-3 Input 1 and 0 condi-

= tions (normally open).

bol for these types of switch contacts, which isn’t as easy to recognize, but is
easier to draw. The circuit with a momentary-contact pushbutton instead of
the switch in Figure 1-1 looks like the one shown in Figure 1-3.

Now, we have a circuit with an input and an output. The input opera-
tion, A, is whatever you’re doing to the pushbutton, and the output opera-
tion, Z, is whatever the light bulb is doing. How is the pushbutton being
operated? Remember the definition we had for 1 and 0; if the pushbutton is
pushed, it’s being operated, so it’s a 1 (TRUE); if the pushbutton is not
being pushed, it’s a 0 (FALSE). For the input of the pushbutton circuit, a 1
is a pushed pushbutton, and a 0 is one that’s been released.

Now, let’s look at the output. We already know that a lighted light bulb
is a 1, and a dark oneisa 0. How does the input affect the output? If what
you’re doing at A is a 1 (pushing the button), the output at Z is also a 1 (the
light is lit), If what you’re doing at A is a O (not pushing the button), the
output at Z (the state of the bulb) is also a 0 (dark). Notice that whatever
you do at A, the logic state of Z (the 1 or 0) is the same. We could say that
“Zisalif Aisal”and “Zisa 0 if A isa 0,” or we could say the same
thing with the expression

Z=A (Boclean expression)

The Boolean expression is named after George Cayley Boole, who first
used this kind of representation to show the relation between a cause and an
effect. Actually, Boole did a great deal more, but we’ll see that later.

The circuit in Figure 1-3 shows everything you can do with one (N.O.)
switch. Let’s see how many different ways we can use two switches:

1. We can attach two switches together in a series connection.
2. We can use a parallel connection.

Figure 1-4 shows both of these.



6 . Asynchronous Circuits Part |

b4
2=A-B Boolean
|A . |8 2
5o et expression
Z equais A AND B

AND circuit

Both A AND B must be operated

L
——O h . Z=A+B Boolean
expression
+V —e 8 4
o—l—c Zequals AQR B

OR circuit Figure 1-4 Switch logic (normally

Either A OR B must be operated open contacts in series and parallel).

1.3 SWITCH CIRCUIT REPRESENTATION OF AND LOGIC AS A
SERIES CIRCUIT OF NORMALLY OPEN SWITCHES

The series circuit in Figure 1-4 is identified as an AND circuit. Both switch
A AND switch B must be operated before the light will go on. We say that a
1 must be input to A AND B to get a 1 at the output, Z. There is a Boolean
expression for this relationship written to the right of the series diagram.
We'll find out later just why the “dot” is used to represent the word AND in
this expression.

1.4 SWITCH CIRCUIT REPRESENTATION OF OR LOGIC AS A
PARALLEL CIRCUIT OF NORMALLY OPEN SWITCHES

The parallel circuit in Figure 1-4 is identified as an OR circuit. Either switch
A OR switch B (or both) must be operated before the light will go on. We
say that a 1 must be input to A OR B to get a 1 at the output, Z. There is a
Boolean expression for this relationship written to the right of the parallel
diagram. We’ll find out later just why the “plus” is used to represent the
word OR in the Boolean expression.

1.5 SWITCH CIRCUIT REPRESENTATION OF NOT LOGIC AS A
SWITCH WITH NORMALLY CLOSED CONTACTS

There’s one more thing that can be done using the pushbuttons. Up to now,
we’ve only seen what normally open contacts do. Let’s take a look at the
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Normally closed
contacts
NOT circuit Bool
— Z=A oolean
Z equals NOT A expression
Z
+V ——0 "
A Figure 1-5 NOT gate (normally

= closed contacts).

normally closed pushbutton. If we attach it like the switch in Figure 1-3,
what we get is shown in Figure 1-5.

The input A has a different effect on the light Z than it did before. Be-
cause the switch bregks the circuit when it is pushed, the light goes out only
when the button is pushed. Now, if we recall that a pushed pushbutton is a
1, and a lighted light bulb is a 1, we can see that a 1 input does NOT produce
a 1 output. In fact, the A input and the Z output are exactly the opposite.
When the switch is a 1 (pushed), the light is a 0 (dark); when the switch is a
0 (released), the light is a 1 (lit). Whatever the A input is, the Z output is
NOT. If the switch is ON (pushed), the light is NOT ON. If the switch is
OFF (released), the light is NOT OFF. The way this circuit behaves leads us
to call it a NOT circuit.

Earlier, we promised that we’d see what the switches used in logic cir-
cuits were really like. After all, you can’t make a computer (with tens of
thousands of switches) out of pushbuttons. First, you’d need tens of thou-
sands of people to push the buttons! And second, to operate at anything
like the speed of real computers, the people would need to have awfully fast
hands! There ought to be better things for all those people with fast hands
to do, so let’s look at another solution to the: ‘‘fast-pushbuttons-without-
fingers” problem.

1.6 BIPOLAR TRANSISTORS USED AS SWITCHES

Figure 1-6 illustrates the use of a bipolar transistor as a switch. Instead of a
finger pressing on a button, the thing that operates this “switch’ is a current
coming in the wire marked base. When this happens, another (usually larger)
current begins to flow in the wire marked collector. You can see that this
current is going to light the bulb. Without the base current, there’s no col-
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NPN
o transistor
+V
——Ty
Collector

Base current current

—

Figure 1-6 Bipolar transistor used
as a swit_ch.

lector current. You can think of the transistor as a pushbutton, like the one
shown below the transistor in the diagram. Instead of a push, the button is
activated by a current. This means that there’ll be no moving parts involved
in switching the light on and off. An NPN transistor like the one shown
needs a positive voltage to make base current flow. Another type of transis-
tor (PNP) needs a negative polarity. For our purposes, let’s stick with a tran-
sistor that is switched on by a positive signal.

Transistors can switch millions of times faster than a pushbutton.
Mechanical switches wear out, and fail sometimes because things get caught
between the moving parts. The transistor, having no moving parts, is not
only faster, but is more reliable than a pushbutton. We’ll see types of logic
circuitry later that put together bipolar transistors exactly as we put together
switches in the AND or OR circuits.

1.7 FIELD-EFFECT TRANSISTORS USED AS SWITCHES

.

Figure 1.7 shows a field-effect transistor (FET) used to replace a pushbutton
in the same way as Figure 1-6 used a bipolar transistor. Like bipolar transis-

L

</ -

‘T4



