Computer-Alded
Logic Design

Robert M. McDermott

Computer-Aided
Logic Design

Robert M. McDermott

Howard W. Sams & Co., iné.
A Subsidiary of Macmilian, inc.
4300 West 62nd Street, Indianapolis, Indiano 46268 U.S.A.

©1585 by Robert M. Mc2ermott

FIRST EDITION
FIRST PRINTING-1985

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without wiitten permisgion from the publisher. No patent
liability is assumed with respect to the use of information contained herein. While
every precaution has been taken in the preparation of this book, the publisher

. dssumes no responsibility for errors or omissions, Neither is any liability assumed
for damages resulting from the use of the information contained herein.

internaticnal Standard Book Number; 0-672-22436-4
Library of Congress Catalog Card Number: 85-72105

Production supervised by White River Press, Inc.

Printed in the United States of America

Preface

The environment for electronics design is rapidly changing. In years past,
electronics desigm was characterized by large lab areas for experimenting,
prototyping, and testing, and by large drafting areas for schematic drawing
and documentation. In modem electronic design facilities, however, the scene
is ome of engineers and {echnicians using computers to periorm experimen-
tation, prototyping, testing, and other tasks with the aid of computer-aided
desigr. {CAD) tools and systems.

Lntil recently, texts and courses un digital design were accomparued
by lab courses in which students woudd experiment and verify their logic
concepts by building mozels and prototypes. They would then spend ad-
ditional hours describing and documentirg their accomplishments. In to-
day’s universities, colieges, and tecitnical schools, the trend is toward having
students prototype and verify their designs using computer-based analysis
programs, with hard-copy printouts tc document their results.

Few schools, however, can afford the major capital investment (in the
hundreds of thousands of dollars) required to provide a computer-aided
design facility. Also, few texte are available to coupie formal training to
hands-on experierice. Self educated technicians or hobbyists are unable to
afford commercial CAD systems, and even the relatively expensive and
sophisticated correspondence courses in electronics or computer technology
rely on the age-old approach of hardware breadboarding. Such schools or
training programs run the risk of producing engineers and technicians whose
skills are outdated even before thev graduate.

This book is intended ic ccuple the theory and technijues of digital
design with the application and use of CAD tools (specifically, logic simu-
larion and logic minimization), To providz hands-on experience with such
CAD tools at a minime! cost, this book aiso includes logic simulation and
logic minimization programs which can be run on a low-cost personai com-
puter. These programs will not eliminate the need for hardware bread-
boarding and hands-on prototyping and verification, any more than com-
mercial programs eliminate the need for first prototyping in professional
design centers. But, as is the case in professional design centers, the programs

will allow you to perform the first levels of design analysis and verification
(often the most difficult task when using the hardware breadboarding con-
cept). They will also provide the exposure to CAD that is increasingly nec-
essary for professional employment and career growth.

Robert M. McDermott

{_ontents

Yeaface

E, Computer-Aidad Desigy
Chapter Overview 1
The Design Process 1
Design Flow 2
Digital Design 4
Functional Design 5
Design Optimization 6
Design Schematic 6
Design Verificatior 8
Design Layout 9
Design Realization 10
Chapter Summary 10

2 Fundamentals of Boolean Logic
Chapter Overview 13
Boaclean Logic 13
Boolean Staternents 14
Compournd Phrases (Boolean Operators) 16
Boolean Operators 20
Using, Booleawn Logic in Electronic Design 21
Fules of Bociean Algebra 26
Chapter Summary 28
Exercises 29

22

Logic Gates

Chapter Overview 31

Transistor Operation 31

Bipolar Circuits 33

FET Circaits (MOS) 38

Complex Boolean Clicults 42

Prepackaged Legic Circuit (integrated Circuit) 42
Chapter Sumrmary 45

Exerciges 4%

Combinational Logic Design and Verification 49
Chapter Overview 49
Combinational Logic 49
Truth Table Specification 50
Converting Truth Tables to Logic Equations 51
Converting Logic Equations into Standard Form 52
Logic Verification 35
Logic Simulation and Verification-55
~ Logic Net List 56 VA
External Stimuli 58
Simulation Output 61
Simulation 62
Design Example (Full Adder) 63
Other Simulator Features 67
Design Example (Multiplier) 71
Test-Pattern Verification 72
Timing Analysis 79
Logic Conversion and Standard Schematic Symbols 81
Chapter Summary 84
Exercises 84»‘ Loy 6 3
Logic Mininffzatipn : 89
Chapter Overview 89 ’
Karnaugh Maps 89
Logic Minimization Using Karnaugh Maps 91
Sum of Products Minimization 95 |
Product of Sums Minimization 98
Higher-Order Karnaugh Map Minimization 99
Prime Implicants and Optimal Selections 100
“Dor’t Care” Qutputs 106
Design Example (Burglar Alarm) 108
Tabular Methods for Logic Minimization 112
Organizing Tabular Data for Efficient Processing 118
Processing “Don’t Care” Terms 126
Multiple-Output Logic Minimization 128
Product of Sums Minimizaticn (Using Maxterms) 133
- Programmable Logic Arrays 135
Computer-Aided Logic Minimization 138
Chapter Summary 140
Exercises 150

Sequential Logic (Memory Elements) : 153
Chapter Overview 153

Sequential Logic 1583

Reset-Set Latch 155

Clocked Logic 155

Data Latch (D-Latch) 158 -

- gt e

Clock Considerations 159

Master-Slave Latches (Flip-Flops) 162

Design Example (Synchronous Full Adder) 165
Toggle and J-K Flip-Flops 173

Simulation Flip-Flop Models 174

Flip-Flop Excitation Tables 179

Chapter Summary 180

Exercises 183

Counters

Chapter Overview 185

Ripple and Synchronous Counters 185
Count-to-n Counters 193

Presettable Counters (Parallel-Load Counters) 194
Counter Cautions 199

Symchronous Preset (Parallel-Load) Counters 201
Up-Down Counter 203

Gray Code Counter 204

"Excesé 3" Counter 214

Shift Counters 219

Design Example (Digital Tachometer) 226
Chapter Summary 230

Exercises 242

Sequential Logic (Parallel /Serial Converters)
Chapter Overview 235

Shift Registers 235

Parallel-to-Serial Conversion 236)
Design Example (Asynchronous Serial Transmitter-Receiver) 238
Detailed Design (Transmitter} 243

Asynchronous Serial Receiver 253
Transmit-Receive System Design Verification 259
Other Considerations 265

Chapter Summary 265

Exercises 271

Finite State Machines

Chapter Overview 273

Finite State Machines 273

State Diagrams 274

State Tables and Implementation 277
The State Assignment Problem 285
Computer-Aided Logic Minimization for State Machines 290
State-Diagram Minimization 292
Mealy and Moore Machines 297
Unclocked Finite State Machines 304
Chapter Summary 309

Exercises 313

U R ¢ v

185

235

273

10

11

Seif-Timed Systems 317
Chapter Overview¢ 317 ‘
Request/Acknowledge Protocol 317
Two-Phase and Four-Phase Request/Acknowledge Protocols 319
Design Example (Burglar Alarm) 321"
Controller Implementation 325
Timer Implementation 329 .
Combination Lock Implemnentation 332 -
Clock Generator Implementation 336 2 :
Design Verification 336
“Chapter Summary 338
Exercises 348

Tri-State Logic : 5 351
Chapter Overview 351
Time-Division Multiplexing 351

Muitiplexing Implementation 353

MOS Transistors as Electronic Switches 359

Advantages of Electronic Switches 362
Typical Bus Application 372
Charge-Sharing 377

Chapter Summary 380

Exercises 380

appenpix AS PROTOSIM Logic Simulation

Program 383
Introduction 383

User Options 390

PROTOSIM Program Listing 391

APPENDIX B: " MINLOG Logic Minimization

Program - 401
Introduction 401

Truth Table Coding 402

State Transition Coding 402

Running the Program and Interpreting the Output 404

MINLOG Program Listing 405 .

aprenox C Common 7400-Series Logic Gates 417

PROTOSIM Coding 417

APPENDIX D: Clock and Pulse Generator Circuits 421

Clock Generator 421
Pulse Generator 421

Suggested Reading 425

" Index

.- 427

COMPUTER-AIDED
DESIGN -

1.1 CHAPTER OVERVIEW

Computer-Aided Design (CAD) has become a reality in all areas of elec-
tronics design work. Computers are used at each stage of the design process
from schematic drawing to logic and circuit analysis to automated layout of
complex electronic systems. This chapter will provide a brief overview of
some of the CAD tools for the electronic design of printed circuit boards
(PCBs) and very large scale integrated (VLSI) circuits.

1.2 THE DESIGN PROCESS

Design engineering embodies all the tasks required to solve a problem sub-
ject to various constraints. Recognition of a problem may be as broad as the
observation that the crime rate in the U.S. is increasing. From sucha problem
statement, the need for a potential engineered solution to the problem (or
a subset of the problem) is identified: for example, a system to protect one’s
property. . _
If this process takes place within a “for profit” organization, a market
study is conducted to determine the need for a solution, the specific functions
-required, and the feasible market price. The conclusions of the study might
indicate that property owners acknowledge the need for a burglar alarm,
and would be willing to pay a given price for a system with certain features.
On an individual scale, the same steps are performed, but not necessarily
in such a formal manner. '
~ Atthis point, the actual “design process” commences. This is the process
of determining a feasible solution that meets the requirements of the prob-
lem. The requirerients typically include both explicitly stated functions and
specifications and implied functions and capabilities. Assumed characteristics
based on accepted engineering standards will also normally be part of the

2

Computer-Aided Logic Design

requirements. These requirements place specific constraints on the potential
solution, such as cost, size, power, or environmenal considerations. The state

of technology alsc imposes constraints, in terms of practical solutions. The __

engineering task involves trading off among various alternatives until a
solution is identified which fils within the various constraints and still sat-
isfies the functional requirement. Typical ““trade-offs” are cost vs. speed and
ipeed vs. power. (A personal computer which costs only $50 but takes days
to run a simple program would not be practical; neither would a high-speed
computer which ran up enormous electricity bills.) ‘

Once a practical solution is identified, the task becomes one of actually
designing a circuit to perform the required func¢tion. The design must then
be analyzed to determine that the circuit does, in fact, produce the required
results. Such analysis is vital before committing sesources to actually produce:
the design. ,

The design is initially drawn as a functional block diagram. It is par-
titioned into managable sub-blocks, with particular attention given to the
inter-block commuhications (interfaces). The key to effective design is par-
titioning it into sub-blocks with clearly defined, independent functions. This

. partitioning of function also introduces a partitioning of constraints: speed,
cost, power, etc. are allocated to each functional block.

The detailed desigr of each functional block should focus on “robuset-
ness,” fo assure that when these independent blocks are interconnected,
they will perform the overall function. If each block has only a small margin
of performance, the likelihood of the composite design performing reliably
would be extremely low. If, on the other hand, the speed of operation of
the individual blocks is relatively independent of the speed of the specific
devices used, the margin of performance will increase, as will she likelihood
of proper system performance.

1.3 DESIGN FLOW

The conceptual design flow, from requirement to product, is shown in Fig.
1-1. In this context, the functional design is the initial process of deriving a ,
potential and realizable solution to the input design requirements. This is
sometimes referred to as architectural analysis and design, and includes such
activities as hardware/software tradeoffs or speed/power tradeoifs. With a
firm functional design, analysis is then performed to determine the best way
to implement the design, subject to the design constraints (technology, size,
power, cost, etc). A schematic is then drawn to show the proposed inter-
connections of available parts.)

This proposed implementation is analyzed for proper functioning by
applying a test sequence that emulates a subset of the conditions to be
expected in real use. Once the designer is confident that the design will

Computer-Aided Design

Requirement
Design o Functional
Concept Design
Design ,| Design
Constraints Optirmization
Avaltabie . Design
Parts Schematie
" Test Design
Scenario Verification
!
Physical Design
Constraints o Layout
v
Acceptance Design
Test Realization
Design
Product

meet functional requirements, the physical'layout for the actual intercon-
nection of devices is formulated. This layout is subject to available physmal
technology, such as types of packages and levels of interconnection. Fmally,
the design is realized and tested for release as a product.

It should be obvious that this design flow is sequential only in the ideal,
conceptual case. During the optimization (functional analysis) phase, alter-
native functional designs may be developed, or new schematics may be
drafted. During design verification, flaws in the functional design or sche-
matic may be uncovered, or preliminary layouts may be drafted. During

- Flg. 1-1

The design
process.

4

Computer-Aided Logic Design

acceptance tests, flaws in functional design may be uncovered, making a
major redesign necessary. The key to effective design is to strive for a se-
quential flow, keeping any backtracking/recycling limited to one or two
stages in the design process. The purpose of computer-aided design is to
assist the designer through each stage, minimizing backtracking or major
recycles. CAD capabilities range from analysis and verification tools to totally
automated processes, such as logic minimization and automatic layout.

~ While this conceptual design flow is applicable to most electronic design
tasks, later sections of this book will primarily address digital logic design
and those computer-aided design tools which support digital logic design.

1.4 DIGITAL DESIGN

The term ““digital’” design -applies to the field of electronics involving the
use of Boolean /binary logic. Designing a circuit which will detect the pres-
ence or absence of a voltage or current is a fairly straightforward task, but
discerning various levels of voltage and current is significantly harder.

Consider, for example, the addition of two numbers electronically: ide-
ally, 1 V plus 1 V would produce 2 V. A linear circuit could perform this
task, but factors such as line resistance or temperature could convert the 1
V to a smaller value, such as .99 V. The resultant output would no longer
be correct (i.e., 1+1 = 1.98?).

By “clipping” or “rounding” the voltage to a predefined level, a correct
(“’accurate’) result could be obtained, but at the cost of precision. Taken to
its extreme, any voltage could be rounded to a binary ON/OFF state, so
that the effects of line loss, noise, or temperature are minimized. Again, this
would be done at the cost of precision (ON + ON = ON?). Precision can
be maintained, however, by enlarging the “width” of the value being mea-
sured or produced, as is done in conventional arithmetic. When the one-
digit numbers 6 and 7 are added, the number 1 is carried to the next column
(thus increasing the “width” of the number), to produce the two-digit num-
ber 13 as a result. When 7 is divided by 2 (producing 3) the result is widened
to add a column for the .5. This produces a more precise result of 3.5. In
binary logic, we provide precision by widening the terms used, so that ON
+ ON = ON OFF (or 1+1 = 10).

In digital design, each signal is used to represent a single Binary digIT
(BIT), and can assume one of two possible values: ON or OFF. These signals,
or groups of signals, are used for computation, communication, and/or con-
trol in complex electronic designs. The use of these signals provides a noise-
immunity and precision that cannot be achieved with analog (linear) design.
As technology advances, more and more classically analog functions are
being replaced by digital logic to take advantage of these characteristics. In
1983, for example. ITT announced the design of a set of VLSI (Very Large

Computer-Aided Design 5

Scale Integrated circuit) chips to produce digital television, with character-
istics and capabilities impossible to achieve with traditional analog circuitry.
Digital filters, digital communication links, and digital switches are com-
monplace today in the telecommunications industry. '
The circuitry needed to make use of logic gates (the basic building blocks
of digital design) is relatively simple to design. The design of complex sys-
tems using these basic logic gates, however, requires careful planning, de-
sign, analysis, and testing to assure that the design will perform the intended ~
function, » :

1.5 FUNCTIONAL DESIGN

Quite often, the functional requirements for a design are ambiguous or neb-
ulous (particularly for complex electronic designs). One of the primary initial
tasks in the design process is to “pin down,” or clarify, these requirements.
In the most primitive sense, computers are sometimes used to verify the
requirements by modeling the function as a computer program. Standard
programming languages, such as FORTRAN, PASCAL, or even BASIC, are”
used for a program that will verify the intended ““transformation” from input
to output.

This programming approach can be extended by using a language tai-
lored to electronic design modeling: a Hardware Description Language (HDL).
Such languages support constructs such as Register Transfer (RTL), for mod-
eling the transfer of data among registers in a design, or Instruction Set
Processing (ISPS), for modeling the control of operations based on a defined
instruction set. These languages may be stand-alone programming languages
which are compiled or interpreted for direct execution on the computer,
languages intended to operate in conjunction with a simulator, or a com-
bination of the two. In the stand-alone approach, the user must include the L
time sequencing, input and output processing operations, etc., while such
operations are included in the simulator.

In some cases, animation. tools are available to model functional oper-
ations. They typically use a graphical input language coupled with a back-
ground simulation program, for modeling sequential flow or control systems
such as finite state machines.

The designer would typically operate at this functional design level,
using the high-level design languages to partition the design into lower-
level, well-defined and verified functional blocks such as processors, con-
trollers, and memory. The CAD tools would be used to simulate the op-
eration of the design at this level, before any physical building is done, to
verify that the design concept and partitioning satisfy the functional re-
quirements. Without CAD, the designer would typically analyze the design
manyally and mathematically at this stage.

o

6

s
o8

Cdﬁputef%d Logic Design

1.6 DESIGN OPTIMIZATION

As part of the analysis proeess, the designer typically considers alternative
overall strategies to achieve the same fanction at reduced cost, reduced
power, reduced size, etc. The same consideration is given to each functional
block of the selected design approach as well.

One such technique is logic minimization: achieving the functional bleck’s
requirements using. the fewest number of gates with the fastest possible
spéed. Logic minimization will be discussed extensively in later chapters.
Other techniques, such as stabe assighinent optimization and code optimization
are also employed to minimize costs. Analysis is also performed to allocate
the design constraints, such as speed and power, among the various func-
tional blocks. This is done to avoid making any particular block unfeasible

ang/or uneconomical to implement,

» Unfortumately, a truly optimal design that satisfies all design constraints
and optimization objectives is seldom possible to achieve (ewen if it is
achieved; it is virtually impossible to “prove” that this design is better than

- every other possible alternative). The major intent at the optimization phase

is 30 eliminate any obviously wasteful approaches in the overall design or

in the design of each functional block and to identify any overconstrained
ginuirements imposed by the architecture selected.

1.7 DESIGN SCHEMATIC

Schematics are a pictorial representation of a design, showing (in symbol
form) the parts wsed and the ways those parts are connected. A schematic

“may be at the block level, functional level, gate level, or transistor level.
. Typically, higher-level blocks refer to more detailed lower—}gvd schematics
“in a hierarchical fashion.

In the 1960s and 1970s, graphlcs terminals connected to a computer
were used for drawing schematics, eliminating the need for manual drafting.
Schematics drawn on a graphics terminal resulted in high-resolution draw-
ings‘that could be easily changed. Usually, the schematics were first hand-
drawn by the designer, then turned over to a professional drafting depart-
ment for computer entry. In this system, design changes entered a queue,
often resulting in a lag between the design change and its formal docu-
mentation on the schematic. In the 1980s, engineering workstations (high-
resolution computer systems for individual use) were introduced, allowing
the concept of schematic capture by the designer to become a reality. Sche-
matic capture systems, which allow the designer to draw a schematic and -
“capture” its information content, are now available for use on personal
computers (Figs. 1-2, 1-3).

Computer-Aided Design

7

Fig. 1-2

FutureNet DASH

schematic design

system.

Fig. 1-3

The Structured
Interactive De-
sign System op-
tion of FutureNet
displays up to 99
levels of circuit
detail.

The SECOND LEVEL. shows the
circult dvagram of the clock circuit.

The SECOND LEVEL aiso shows
the CPU kermal which i

8 Computer-Aided Logic Design

Today's typical high technology design environment gives the designer
the ability to enter a schematic on the computer directly, with an option to
automatically produce a net-list (a list of devices and their interconnections).
The schematic can then be processed by computer-based analysis and ver-
ification tools, or used in manual or automatic construction of the design
from the net-list.

1.8 DESIGN VERIFICATION

Before a design goes into production, the designer performs extensive testing
and verification to make sure that it will perform as intended or specified.
In the past, stich testing was typically performed an the designer’s work-
bench, using prototype (breadboard) models of the schematic design. Building
and testing the model itself was often a time-consuming process, since each

- part and wire had to be verified as identical to that shown in the schematic.
Once the breadboard and schematic were verified as identical, design changes
were difficult, sometimes introducing wiring errors in previously verified

, sections. The test setup and the testing process itself was tedious, and manual

P data collection was the norm for documenting results.
v The dévelopment of the integrated circuit (IC) made necessary the use
’ of computer-based “‘software breadboarding” (circuit and logic simulation)
approaches to design verification. Hardware breadboarding of the thousands
(now hundreds of thousands) of transistors in an integrated circuit became
./ bothimpractical and inaccurate, so compuier models for transistors and logic
o gates veere formulated and incorporated into simulation systems.

Rather than building a breadbeard, today’s designer describes the design
{the interconnection of devices) in net-list form to the computer. The testing
~ process is then accomplished by providing the computer with a description
' of the input waveforms (external stimuli). The computer prints out the re-
sults: the expected outputs from the described design with the given input
waveforms applied. :

Ir the 19608 and 1970s, such simulation tools were limited primarily
to specialized KC design facilities, since they required use of an expensive
mainframe or minicomputer and were limited in model availability (when
a new microprocessor chip became available for printed board design, it
would be months or years before a software simulation model might be
available). But as engineering workstations and personal computers became
commamplace. the concept of computer-aided design verification for general
use became a reality.

As will be diseussed and demonstrated in later chapters, it is now fea- ’
sible to simulate a design on a personal computer to verify proper logic
functionality before actually building the design. PROTOSIM, a BASIC pro-
gram for desigu simulatior,, is included in Appendix A. Testing and debug-

)

