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Preface

This volume describes our intellectual path from the physics of complex sys-
tems to the science of artificial cognitive systems. It was exciting to discover
that many of the concepts and methods which succeed in describing the self-
organizing phenomena of the physical world are relevant also for understand-
ing cognitive processes. Several nonlinear physicists have felt the fascination
of such discovery in recent years.

In this volume, we will limit our discussion to artificial cognitive systems,
without attempting to model either the cognitive behaviour or the nervous
structure of humans or animals. On the one hand, such artificial systems are
important per se; on the other hand, it can be expected that their study will
shed light on some general principles which are relevant also to biological
cognitive systems.

The main purpose of this volume is to show that nonlinear dynamical
systems have several properties which make them particularly attractive for
reaching some of the goals of artificial intelligence.

The enthusiasm which was mentioned above must however be qualified by
a critical consideration of the limitations of the dynamical systems approach.
Understanding cognitive processes is a tremendous scientific challenge, and
the achievements reached so far allow no single method to claim that it is the
only valid one. In particular, the approach based upon nonlinear dynamical
systems, which is our main topic, is still in an early stage of development.

The human brain evolved by adopting an “opportunistic” strategy, and
artificial cognitive systems should in an analogous way evolve towards an in-
tegration of different paradigms, in particular towards a coupling of dynamical
systems with classical Al techniques.

The structure of this book reflects these beliefs. The most successful and
most thoroughly studied dynamical cognitive systems are connectionist mod-
els: therefore much attention is given to neural network models. Indeed the
volume can also be used as an introductory textbook about connectionism.

However, the most attractive features of connectionist models are shared
by a wider class of dynamical systems. In our view, emphasis should be
placed upon these properties of dynamical systems rather than on the fact
that the latter could be interpreted as networks of highly simplified neurons.
Therefore, room is left also for dynamical cognitive systems different from
neural networks.



VIII Preface

Classifier systems are given much emphasis, since they can provide a link
between the dynamical and the inferential approach to Al

The presentation given here is by no means complete. The literature in
this field is large and rapidly growing: the emphasis placed upon the different
models reflects reasons of scientific interest, historical importance, personal
taste and, as in every human affair, randomness. Qur choice was to treat,
first and foremost, some models which allowed us to illustrate, as clearly as
possible, what we believe to be the most significant characteristics of the
dynamical approach to artificial intelligence. We do not mean that the space
given to the different models is a measure of their scientific or applicative
importance.

Moreover, this volume is concerned essentially with ideas, methods and
techniques. We did not feel it appropriate to include a detailed account of
work on applications, since this would socon become old, while we hope that
at least some of the ideas presented here may have a longer decay constant.

This volume is the result of the joint work by both of us; however, the
major influence in Chaps. 1, 3 and 5 was by GZ, and in Chaps. 2, 4, 6 and 7,
by RS.

We wish to acknowledge here the support of the University of Bologna,
Enidata and Tema to our work. Such support was not only financial, but
also scientific and cultural. Particular thanks are due to Vincenzo Gervasio,
Francesco Zambon, Silvio Serbassi and Paolo Verrecchia.

The development of the ideas presented here has been made possible by the
stimulating collaboration with some friends and colleagues: Mario Compiani,
Daniele Montanari and Gianfranco Valastro. Most of the results presented
here have been obtained by working with them on specific research projects.

The contribution of some bright students (Franco Fasano, Paolo Simonini
and Luciana Malferrari) has also been very important.

We have also enjoyed the benefit of deep and fruitful discussions with Marco
Vanneschi and Fabrizio Baiardi about the relationship between dynamical
networks and parallel computation, with Tito Arecchi and Gianfranco Basti
about the role of chaos in neural models, with Francoise Fogelman about
layered feedforward networks and with Luc Steels about non-neural dynam-
ical systems for Al and about genetic algorithms. On this latter topic, also
fruitful discussions with John Holland and Heinz Muehlenbein are gratefully
acknowledged. Rick Riolo kindly provided us with the CFS-C software pack-
age for classifier systems. We also benefited from a stimulating discussion with
Edoardo Caianiello about the past and the future of neural networks.

Thanks are due also to Derek Jones, who carried out a careful English
translation of our work.

We finally wish to express our gratitude to Hans Wossner and to his staff
at Springer-Verlag for their interest and their support to our book, and for
their friendly and careful editorial work.

Roberto Serra

Bologna, January 1990 Gianni Zanarini
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1. Introductory Concepts

1.1 Complex Systems and Self-organization

Observing many natural phenomena (such as a flame, a smoke-ring, a proces-
sion of clouds) we are often surprised by their regularity, their organization,
their dynamical order. The science of complex systems has undertaken the
study of these aspects of simplicity which emerge from interactions amongst
a myriad of elementary “objects”. It has stepped forward to answer the ques-
tions which present themselves when we observe more closely, with greater
attention, many systems with which we have become acquainted from daily
experience.

This order, which we often observe over a certain space-time scale, how does
it arise? From where do the individual elementary objects get the information
necessary for them to conform to the global order? Furthermore, it is an order
which relates to a completely different space-time scale from any meaningful
one at the level of the individual elements themselves. Where does the design
for this emergent order lie? From where is it controlled?

The answer provided by the science of complexity centres upon the de-
velopment of the concept of “self-organization”, which expresses precisely this
possibility of highly organized behaviour even in the absence of a pre-ordained
design (Haken, 1978; Nicolis and Prigogine, 1977; Serra et al., 1986).

As an example, in order to clarify the genesis of a self-organized situation
in a physical system, we will refer to a particularly interesting system: the
laser. To a first approximation, one can consider this system as being com-
posed of a volume of “active material” placed between two mirrors and of a
suitable external energy source. The atoms of the active material function as
“oscillators”: once promoted to an excited state, they can emit electromag-
netic radiation of a characteristic frequency; they can also absorb incident
radiation of the same frequency. Emission, in particular, can take place either
spontaneously or through a kind of “resonance” with the incident radiation
(“stimulated emission”).

Usually, in response to an external excitation, a system of this type shows
an “uncorrelated” emission, such as that giving rise to light emission in a
normal electric lamp. However, under particular conditions, defined by the
geometry of the system and by the intensity of the external radiation, the
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oscillators get synchronized and operate in a cooperative mode, supplying a
highly coherent emission of radiation. In this case, the light waves produced
by the cooperative behaviour of the individual atoms act as “messengers of
a possible order” towards the individual atoms themselves, whose behaviour
they condition.

In this example (although its illustration has been greatly simplified for
reasons of brevity) we can see the development of a self-organization which
is a consequence of the collective behaviour of a large number of atoms. This
self-organization, however, can be recognized and is meaningful only over a
space-time scale which is different from that of the atoms, being much more
aggregate.

Even within physics, one can find many other self-organization phenomena,
so many that we begin to think that we may be changing our way of looking
at the world: we observe today, with great attention and wonder, ordered
dynamical structures which in the past we took for granted, or considered as
being not particularly interesting.

Let us recall another case: the thermo-hydrodynamic instabilities in a fluid
close to its boiling point. It is well-known that, under the action of a thermal
gradient, produced and maintained externally, convection currents develop
within the fluid. As in the case of laser, under suitable experimental conditions,
these currents take shape according to regular structures of a characteristic
“beehive” form (Bénard cells), which indicate the presence of a high level of
molecular cooperation (Haken, 1978).

One striking aspect of these physical examples is the fact that the estab-
lishment of a self-organized behaviour depends upon parameters with quite a
meagre information content about the characteristics of the self-organization.
The geometrical structure and the radiation intensity in a laser, like the phys-
ical dimensions and the thermal gradient in thermo-hydrodynamical instabil-
ities, “know nothing” of the self-organization which emerges in the system,
just as the atoms of the active material or the molecules of the fluid know
nothing of it.

As we shall see in Chap. 3, this observation can be reformulated in math-
ematical terms, because the cooperative effects and the corresponding self-
organization processes may be described by means of nonlinear equations
which usually allow multiple asymptotic solutions; the variation of suitable
parameters can alter the stability characteristics of the solutions, so inducing
transitions from one to another.

At this point, however, a cautionary note is necessary. These allusions to the
themes of self-organization might seem to suggest that, in all cases, a greater
order and a greater simplicity emerge at the more aggregated levels. In many
cases, however, on aggregate space-time scales, highly complex situations may
be observed which can be characterized in terms of “deterministic chaos”
(Arecchi, 1986; Serra et al., 1986). This theme will be taken up again in
Chap. 3.
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1.2 Self-organization in Artificial Systems

It might seem that the above considerations refer exclusively to natural sys-
tems. But, if we reflect for a moment, we realize that this is not true. Take,
for example, the laser: it is a system which, while being based upon natural
processes and showing an effect which in some cases may be found in nature,
is normally built and operated according to a design. Can we then say that
what is observed in a laser is an example of “designed self-organization”?

The laser lies in an intermediate position between natural and artificial
systems. Its designer, in fact, can neither foresee nor control the behaviour of
the single elements (in this case, the atoms of the active material). The design
essentially regards the control parameters which affect the system’s behaviour.

A completely artificial system is one which does not critically depend upon
a material support. The best examples of completely artificial systems are
abstract mathematical and logical systems. Even though an abstract system
is made up of a large number of elements, every one of them can be defined a
priori. Therefore, we must clarify the meaning of self-organization in artificial
systems.

In order to enlarge upon this point, we will briefly examine a particular
class of artificial systems, which will be dealt with in detail in Chap. 3: one-
dimensional cellular automata (Wolfram, 1986). Consider a large number of
binary elements (i.e. which can only take the values 0 or 1) and suppose
that these elements are placed in a regular fashion along a line, each being
connected to its two “nearest neighbours” (next left and next right). At any
discrete point in time, the state of each element is defined by a function of the
states of the element itself and of its two nearest neighbours at the preceding
time-step. For simplicity, we will assume that this function is the same for all
the elements. To avoid boundary problems, we also assume that the system
closes upon itself to form a circle.

A detailed examination of the various types of automata and their classifica-
tion is given in Chap. 3. For the moment, we will show that cellular automata,
although extremely simple from the point of view of their “elementary laws”,
may exhibit unexpected and complex behaviours which can be considered as

Self-OIgaIllzed.
\

Fig. 1.1a,b. Two examples of one-dimensional cellular automata. Time evolution is from
top to bottom of figure
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To illustrate this statement, let us first of all consider the automaton in
Fig.1.1a, and follow its time evolution starting from randomly defined initial
conditions. Black dots represent 1’s, while white dots represent 0’s. Time
evolution is from the top to the bottom of the figure. As seen in the figure,
the system shows a behaviour which is both ordered and predictable: in the
space-time plane, in fact, we can see the appearance and the disappearance of
triangular structures of various dimensions. From an undifferentiated initial
state (that is, with the same probability of having one or the other of the
two possible values at any position) the system moves on to a multiplicity of
well-differentiated domains which evolve over time. Another ordered system
is shown in Fig.1.1b. In this case, after a short initial transient, the system
behaves in an extremely regular manner, giving rise to a time-independent
configuration. The detailed structure of this configuration (number of “lines”
and distance between “lines”) depends upon the initial conditions.

We can then say that, in these systems, a kind of spontaneous self-organiza-
tion takes place, which brings them closer to the physical systems mentioned
above. Their organization, in fact, does not derive directly from an external
design: the design does not regard the whole system, but only the individual
elements, whose interaction gives rise to an overall regularity (whether it
be time-dependent, as in the case of the “triangles” in Fig.1.1a, or time-
independent, as in the case of the “lines” in Fig.1.1b).

Self-organization, therefore, may arise not only from the interaction be-
tween unknown microscopic dynamics, but also from the practical impossibil-
ity of foreseeing all possible kinds of collective behaviour which can emerge
from the interactions between microscopic elements.

This leads to an extremely important consequence: in a more radical way
than in the case of natural systems, self-organization in abstract systems is
not an observer-independent concept.

In order to describe the emergence of self-organized behaviours in cellular
antomata we have adopted a particular space-time scale: that is, we have
considered to be meaningful a spatial dimension of the order of the whole
network (unlike that which is meaningful for a single element, of the order of
the distance between elements) and we have adopted an aggregate time scale
(unlike that which is meaningful for the individual elements, whose memory
is limited to a single time-step). It is from this particular point of view that
the evolution of the automata in Fig.1.1 may be described as an emergence
of self-organization, i.e. of an overall order resulting from a large number of
elementary interactions.

This emergence of order can be considered to be associated with a reduction
in redundancy, with an elimination of the excess of data which characterizes
the initial condition. In a global framework, in fact, the specific distribution
of 1’s and 0’s in the initial condition is merely one of the many possible mi-
croscopic realizations of the characteristic randomness of the initial condition
itself. In this sense, a detailed knowledge of the initial condition may be con-
sidered to be redundant.
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On the other hand, if we observe the system by concentrating upon the
space-time scales which are characteristic of the individual elements (that
is, from a microscopic point of view), nothing important changes with time:
neither the possible states, nor the number of nearest neighbours, nor the
transition function. From this point of view, the state of the system at any
time appears to be completely determined by the law of transformation and by
the initial conditions. But this is not all: surprisingly, an observer adopting this
microscopic point of view might even notice that the evolution of the system
carries with it a reduction, an impoverishment of the initial information. The
observer may explain this by the fact that the transformations produced by
the transition functions in some cases compress the richness of the initial state
into a repetitive homogeneity (as, for example, in the case shown in Fig. 1.1b).

But why does that which is seen from an overall viewpoint as a useless
redundancy of the initial conditions now become a wealth of information
which is destroyed over time? Precisely because the attention of a microscopic
observer is not focussed upon the random nature of the initial distribution,
but rather upon its detailed structure.

These two different approaches in considering the characteristics of the
initial conditions are confirmed by posing the question in terms of the com-
plexity of the algorithm necessary for defining them. Here, for complexity of
an algorithm we mean, following Kolmogorov and Chaitin (Chaitin, 1975), the
minimum length of the program necessary to carry out the required task. It
can then immediately be seen that the algorithm required to obtain a string
of random numbers is, from the overall viewpoint, quite simple, whereas, from
the microscopic viewpoint, it is the most complex algorithm that one can
imagine, because there is no way in which the corresponding program can be
made shorter than the description of the string of numbers which constitutes
the output (Atlan, 1987).

To summarize, it can be said that, from the macroscopic viewpoint only,
that which emerges is meaningful, distinguishing itself from the insignificant
redundancy of the microscopic level, whereas at the microscopic level, not only
are the transition functions and the interconnections important, but also the
detailed information about initial conditions.

Therefore, if we find ourselves in either of these two points of observation,
that which is important for the other may lose its importance. These brief
reflections confirm the relevance, the central role of the observer in the analysis
of systems and, in particular, in the identification of their self-organization
characteristics.

1.3 Cognitive Processes in Artificial Systems

We would now like to further extend our considerations about the centrality
of the observer in the identification and in the description of self-organization
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processes. As we shall see, in fact, it is the adoption of a specific viewpoint
which allows the recognition and the description of cognitive processes (Ceruti,
1986; Varela, 1986) in a system.

Let us first of all take the viewpoint of an observer external to the system,
which studies its interaction with an environment which is, a priori, endowed
with a meaning: the “design and control” point of view. Then one has to see
if and how the system, at least partially, recognizes the meaning of the input.

In this light, for example, Fig.1.1b may be interpreted in the sense that
the system “responds” to the initial conditions with a behaviour (which can
be detected externally through the time sequence shown in the figure) which
“recognizes”, in the initial conditions, particular spatial sequences of 1’s and
0’s.

On the other hand, by taking up a point of view “internal to the system”
(however vague this expression may be in the case of systems which are not
capable of self-consciousness), attention will be focussed upon its properties
of autonomy, that is, upon its autonomous “creation of meaning” for the
experience of the external environment: an experience which, in the case of
the example in Fig. 1.1b, consists only of the initial conditions.

This change of viewpoint leads to consider the environmental influences
as having, a priori, no meaning for the system. In other words, in this latter
case it is not assumed that an “absolute” meaning is given for the external
environment, but rather a creation of meaning is observed by the system itself
(Varela, 1986).

The previous example of cellular automata does not allow a more detailed
examination of the differences between the two approaches towards cognitive
processes in artificial systems mentioned above. In fact, in order to observe
an effective creation of meaning, a building of representations, a recognition
of configurations, a learning from the external environment, it is necessary to
consider systems which can change. We will take up these arguments again in
the following chapters, where learning in artificial systems is discussed.

One can, however, speak of cognitive behaviour in artificial systems both
from a “control® perspective and from an “internal” viewpoint. Thus, it is
not a question of choosing once and for all between the two points of view
which have been briefly outlined here. It would be much better to recognize
their complementary nature, and to adopt one or the other according to the
objectives set.

For example, it is clear that if cellular automata are to be studied as the first
example of complex artificial systems capable of cognitive behaviours (such as
the recognition and learning of “patterns” which are meaningful to an external
observer) then the adoption of a “control-centred” approach is certainly an
adequate one. If, on the other hand, the reference to cellular automata has
the function of favouring the comprehension of concepts which are central to
the description of biological systems (such as, for instance, the creation of
meaning), then the adoption of a “control-centred” approach may turn out
to be misleading and trivializing, and an “internal” perspective seems a more
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adequate one when our attention is directed towards the emergent cognitive
dimensions.

1.4 Metaphors of the Cognitive Sciences

We have presented so far some examples and reflections which may help the
reader to appreciate the richness and the fascination (scientific and epistemo-
logical, besides aesthetic) of the science of complex systems, and its potential
application to the study of cognitive systems. At this point, however, some
historical aspects are worth mentioning, in order to better appreciate the nov-
elty and the effectiveness of the complex systems approach towards the study
of cognitive processes, whilst succeeding, at the same time, to understand its
roots. This theme will be taken up in more detail in the next chapter.

Cognitive processes are the object of research in various disciplines which,
over the last 50 years, have experienced varied and continually changing
interrelationships: neuroscience, psychology and information science (Parisi,
1989).

It is quite difficult to summarize the differences in the various approaches,
without running the risk of being over-schematic. It may be stated, however,
that neuroscience studies the neurocerebral system as a physical apparatus
which shows computational properties (in the etymological meaning of anal-
ysis and evaluation of different pieces of information): input recognition, rea-
soning, learning, etc. Neuroscience essentially focusses upon the microscopic
level, attempting to explain the working of the brain at an overall level by
reducing it to elementary processes.

Psychology, on the other hand, deals more with the mind than with the
brain, i.e., it deals with cognitive behaviours manifested by living organisms
having a neuro-cerebral apparatus. Even when the prevalence of a reductionist
approach has emphasized the expectation of a definitive explanation of the
working of the mind on the basis of the underlying biochemical processes,
psychology has always maintained an approach centred on high levels of
aggregation.

Information science, unlike the previous ones, is not characterized by a
precise option about the level of aggregation for the study of its own objects.
On the contrary, it is possible (at least schematically) to distinguish in its
history various phases corresponding to different approaches, and therefore
also to different relationships with the other disciplines cited above. More-
over, information science, precisely because of its greater variety of different
viewpoints, may constitute an important reference for a better articulation
between aggregate and microscopic approaches in the cognitive sciences as a
whole.

When information science, under the name of cybernetics, began the formal
study of mental functions, it was characterized by a tendentially microscopic
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approach. It could not, in fact, be otherwise, as one of the objectives of
cybernetics was that of building machines capable of cognitive behaviours:
its aim was not only to explain, but to explain operationally, achieving high-
level functions starting from very simple elementary cognitive mechanisms.
This particular orientation of cybernetics, as may be expected, favoured the
development of close links with neuroscience.

For various reasons (some of which will be examined below), this approach
had limited success, and the informatics community thus created the expres-
sion “artificial intelligence” to indicate a new direction of information science:
the high level approach, in which cognitive functions began to be studied
independently of their physical implementation. Increasingly, the “artificial
minds” moved away from the “electronic brains™ which supported them, ren-
dering themselves autonomous. This transition, abandoning the hypothesis
that artificial cognitive systems could reap advantage and inspiration from
the study of the physical characteristics of the brain, led information science
further away from neuroscience but closer to psychology.

This allows the understanding of the birth of a whole new line of psycho-
logical research (cognitive psychology) inspired by the analogy between sym-
bolic computing by the mind and the operation of computers (in their high-
level characteristics, and no longer in their micro-organization). In particular,
within the field of cognitive psychology, the drafting of computer programs
in high level languages has increasingly taken on the function of simulating
mental processes, although with the awareness that complete reduction is not
possible.

Some of the problems currently facing artificial intelligence will be examined
in the following chapters, together with its undeniable successes. We will
limit ourselves here to recalling the difficulties and the costs associated with
the storage of knowledge in the form of rules, the problem of managing
contradictions and uncertainties, and the fragility of artificial intelligence
systems. These difficulties force to reflect more deeply upon the convenience,
and even the possibility, of completely separating the “artificial mind” from
the “physical machine” supporting it.

It is true, in fact, that many high level cognitive functions can be imple-
mented upon a multiplicity of different substrates. But it is also true that
a particular organization of a substrate (i.e., its microscopic structure) may
give rise, through self-organization processes, to high level primitives whose
implementation would, perhaps, otherwise not even have been attempted.

The development of a science of complex systems, which stresses the im-
portance of self-organization processes, can give a decisive contribution in
overcoming many of the difficulties faced by artificial intelligence, showing the
potentialities of “connectionist” architectures, that is of structures made up
of an enormous number of identical and mutually interconnected elements.
Moreover, also the developments of neuroscience have contributed to the re-
launching of the cybernetic approach.
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At the same time, cognitive psychology has come up against the increas-
ingly evident limits of the approach adopted. The “commonsense reasoning”,
the spontaneous generalizations, the learning by examples instead of by rules
(to cite only a few points), that is, the simplest cognitive capabilities of a
young child, appear to be rather difficult to include within the framework of
the “metaphor” of the symbolic processing of information which inspires cog-
nitive psychology. Thus, even psychology has been compelled to search for new
reference models which could, at least, complement the preceding ones where
these latter fail. The new “neurally inspired” (not purely “mind inspired”)
information science increasingly constitutes, in this sense, a promising “work-
shop” for the construction of models capable of interconnecting the various
levels of analysis and of emulating cognitive behaviour.

In a sense, a historical circle has been closed, and information science is
today “revisiting” the cultural environment in which it was born. But its
history is not one of lurchings and waverings: it is rather the history of a
relationship between a complex system (the mind-brain system) and a complex
task (the development of artificial systems with cognitive capabilities).



