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Preface

This book is intended to serve as a short, concise, analytical text
for a first semester graduate course. It is based upon lectures
given by the Author in the Graduate Division of Applied Mathe-
matics, while visiting Professor at Brown University, Provi-
dence, R. I. Owing to limitation in length, practical applications,
exercises, and additional matter given in the lectures, have had
to be omitted. These, however, would be supplied by the lecturer
in any case. It has been necessary to assume that the reader has
an elementary working knowledge of Bessel functions, Fourier’s
integral theorem, and Operational Calculus. Such knowledge
may now be regarded as a pre-requisite for the analytical study
of vibrational problems. The Chapters proceed in logical se-
quence, and as far as possible (apart from starred sections, which

are intended for a second reading), in order of analytical
difficulty.

Symbols and abbreviations. In general these are standard, but
heavy type has been used to signify ‘per unit length’, ‘per unit
area’, and the moment of inertia of a disk, normal type repre-
senting that for a cross-section. The symbol = has been used to
signify the p-multiplied Laplace transform. It was introduced
by the Author in 1938, and is now standard in France. Being
made with one motion of the pen, it is much simpler than any
other notation yet proposed. A slight modification of the symbol
for use with the ordinary L.T. will be found in reference [13]
p- 23.

f(©) = ¢(p) means that ¢(p) is the p-multiplied Laplace trans-
form of f(t),
means is approximately equal to,
means is analogous to,
] means an item in the list of references,
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b.c.
cf.
c-8
d.d.c.
D.E.
e.m.f.
K.E.
Lh.s.
L.T.
m.o.i.
p.fi.(s)
pi
r.h.s.

means
means
means
means
means
means
means
means
means
means
means
means
means

boundary condition,
complementary function,
cross-sectional,

dynamic deformation curve,
differential equation,
electromotive force,

kinetic energy,

left hand side,

p-multiplied Laplace transform,
moment of inertia,
potential difference(s),
particular integral,

right hand side.
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CHAPTER I

Linear Systems having One Degree of Freedom

1. InTrRODUCTION Vibration is ubiquitous! It occurs in every
phase of life. The human body cannot survive without the
beating of the heart, while speech or any mode of transporta-
tion, even the act of walking, is associated with vibration. Most
vibrations are complicated, e.g. those of an automobile on a
rough road. By aid of mathematical analysis based upon suit-
able assumptions, complicated vibrations may be split up into
simple types, just as a periodic function, an alternating current,
or a continuous sound wave, may be analysed into its Fourier
components. To obtain a solution adequate to account for the
behaviour of an intricate system, often depends largely on the
skill with which the basic simplifying assumptions are made.
This is especially the case if numerical values computed from
the analysis have to be compared with observed data. Other-
wise the assumptions may be less rigorous, e.g. when a purely
qualitative description of a physical phenomenon is needed.

A vibrational system is essentially one having mass and stiff-
ness, or their analogs. Stiffness implies that alteration in the
configuration due to an applied force is accompanied by a
change in potential energy (strain). Tension in a string is
equivalent to stiffness of a bar.

The electrical analogs of mass and stiffness are inductance
and elastance (reciprocal of capacitance). Alternatively, com-
pliance (reciprocal of stiffness) and capacitance are analogous.
Theoretically it is expedient, in certain cases, to consider ‘ideal-
ised’ or pure masses and stiffnesses, or their analogs. The
vibrating system is then said to be ‘discrete’ in type. Examples
are a relatively heavy mass vibrating on a coil spring, or the
balance wheel and hair spring of a watch. Such systems, in
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which the motion is specified by only one coordinate,* are said
to have one degree of freedom. In §70 the velocity ¢ of a dis-
turbance along the spring is (s/m)'’?, so when the spring has
stiffness only, the mass is zero and ¢ infinite. Thus a force
applied at one end of the spring is communicated to the other
end instantaneously, so the spring moves in phase throughout.
This result is approximated by a spring and a relatively large
mass, but since no actual velocity can exceed that of light, the
‘idealised’ spring must be regarded as a convenient fiction!
When the mass and stiffness (or their analogs) are distributed,
either uniformly or non-uniformly without a break, the system
is said to be continuous, e.g. a violin string, the skin of a kettle-
drum. In a rigorous sense all systems are continuous, for each
element of a discrete system may be set into vibration inde-
pendently. The pendulum of a clock may be regarded as a
discrete vibrational system, whose frequency is sub-sonic. But
if we remove the bob and tap either it or the pendulum rod,
audible vibrations ensue. Thus each element of the discrete
system is itself a continuous system, but the lowest frequencies
of the latter far exceed in value that of the (idealised) discrete
system which they represent jointly in practice. Moreover, in
general a discrete system is one composed of continuous ele-
ments, whose lowest free frequencies are much greater than
those of the composite system. The same argument is applicable
to electrical circuits comprising inductance, capacitance, and
resistance. In practice, every coil has capacitance and resist-
ance, and free electrical oscillations may occur if the resistance
is not too high, ie. the system is a continuous type. But by
connecting a relatively large capacitance in parallel with the
coil, the system may be regarded as discrete. The frequency of
the combination is now a small fraction of the fundamental of
the coil alone. The current is substantially in phase throughout
the circuit, which has one degree of freedom, since only one
coordinate (current) is needed to describe the (analogous) mo-
tion completely. Moreover, there is no such physical quantity
as a pure mass. stiffness, inductance, capacitance, or resistance.

*z for the mass, and 8 for the wheel.
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But from an analytical viewpoint, provided certain conditions
are satisfied, it is expedient to consider each of these to exist
separately.

2. SIMPLE MASS-SPRING SYSTEM Fig. 2.1A is a schematic
diagram for a discrete mechanical system, where a mass m is
fixed to a uniform helical spring s, whose other end is anchored.
If m is displaced from its central or equilibrium position (when
at rest), it will execute oscillations about that position. The
motion is specified completely by one coordinate z, so the
system has one degree of freedom.* To simplify the mathe-

f
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Fig. 2.1B.
Fig. 2.1A

matical analysis, we assume that (a) there is absence of loss,
i.e. the motion is undamped, (b) the mass of the spring m, <« m.
If the spring is loaded by known static forces, and the corre-
sponding displacements measured, the graphical relationship
between them is illustrated in Fig. 2.1B. This is the force-
displacement ‘characteristic’ of the system, being linear pro-
vided the displacement is within certain limits. Beyond these,
the graph takes the non-linear form indicated by the broken
lines. We shall confine our attention to the linear part of the
graph where the relationship is f = sz, s being the force per
unit axial displacement (=), or the ‘stiffness’ of the complete

*A mass and spring without the guides shown in Fig. 2.1A has several
degrees of freedom. If suspended vertically, it will oscillate like a pendulum,
and vibrate axially too, etc.
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spring of length 1.1 The work done in causing a displacement z
is represented by the shaded area in Fig. 2.1B, which gives the
strain or potential energy V stored in the spring. Thus

V= f fdz = s2/2. 2.1
0

3. THE DIFFERENTIAL EQUATION By obtaining and then
solving this, we can discuss the motion of the system. Since
there is no driving or external force acting, the condition to be
satisfied is that the sum of the internal forces must vanish. At
any displacement z ¢ 0, there are two forces, (a) sz the spring
force tending to restore m to its central position 0, (b) the

X
X
X

time t (sec)
angle wt (radian)

Fig. 3.1

inertial force md’z/dt* by virtue of acceleration or deceleration,
according as m is moving towards or away from 0. Thus

mi + sx = 0, 3.1

or 4wz =0, 3.2
where &, = (s/m)'”. The complete solution of 3.2, with two
arbitrary constants, is

tIn general, stiffiness = df/dz, which varies with z if the characteristic
is non-linear. For unit length of spring, the stiffness in the linear case is si.
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z = A coswt+ Bsinw! 33

= C cos (!t — ¢, 34

where C = (A + B*)'?, ¢ = tan™'(B/A).

To determine A, B, we have to specify ‘initial’ conditions,
i.e. the displacement and velocity of m at ¢ = 0.* Suppose the
spring is extended by z, and released at ¢ = 0. The initial
conditions are z = 1, , £ = 0. Substituting the first into 3.3
gives A = x, . Differentiating 3.3

% = w,(— A sin w,t + B cos w,), 3.5

and for the condition £ = 0, B = 0. Inserting A, B, into 3.3
yields
z = I, cOS wl, 3.6

which gives the displacement of m from 0 at any time ¢ > 0.
The angular frequency of the motion is w, , the frequency in
cycles per second w,/27, and the periodic time 27/w, . By
virtue of the cosinusoidal relationship, the motion of m is said
to be harmonic. It is evident from 3.4 that whatever A, B,
and, therefore, the initial conditions, the motion of m will be
harmonic, since ¢ affects merely its. phase.
By 3.6 the velocity of m is

I = —wsinwt = wz cos (w,t + x/2), 3.7
and the acceleration

F = —wiz, cosw !l = wiz, cos (wt + 7). 38

By 3.6, 3.7, the phase of the velocity is /2 in advance of the
displacement, while by 3.6, 3.8, the acceleration is opposite to
the displacement, i.e. 7 radianst in advance. The phase rela-
tionships are shown by the graphs in Fig. 3.1.

*The number of arbitrary constants and initial conditions is the same as
the order of the differential equation.

1This is x/uy seconds, since (wit + x) = wi(t + x/w).
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4, ENERGY EQUATION Writing dz/dt = v, we get d’z/dt’ =
(dv/dx)(dz/dt) = vdv/dz. Substituting into 3.1 gives

mv dv/dx + sz = 0. 4.1
Multiplying throughout by dz and integrating, we obtain

m f vdy + s f zdz = C, a constant, 4.2

and the energy equation is
mv*/2 + s2*/2 = C. 4.3

This asserts that the sum of the kinetic energy of m, and the
potential energy of s, is constant for all |z | < z,, and ¢ > 0.
Whenz = z,,v = 0, so

C = sx2/2, 44
and when z = 0, v = o, , s0
C = mi../2, 4.5

these corresponding to the extreme and central positions, re-
spectively.

Hence sza/2 = mvl./2, 4.6

and the maximum potential (strain) and kinetic energies are
equal. By 4.3, 4.4, the energy equation may be written

m* /2 = s(ah — 25)/2. 4.7

5. ELEcTRICAL ANALOG Referring to Fig. 5.1, suppose the
capacitance has a charge @, and at ¢ = 0 the switch is closed.

L
‘ (swdch
c=1/S

Fig. 5.1
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Electrical oscillations will ensue. If I is the instantaneous cur-
rent, since the sum of the p.d.s in the circuit must vanish,
the D.E. is

LdI/dt + sf Idt=0, 5.1

where the elastance S = 1/C. Now I = @, so
L§ + 8Q = o. 5.2

This is identical in form with 3.1, and the mechanical and
electrical systems are analogous, provided z ~ @, m ~ L,
s ~ 8 = 1/C. Further, since I = Q, it follows that & —~ I. Thus
displacement is analogous to quantity of electricity, mass to
inductance, stiffness to elastance (or compliance to capacitance),

and velocity to current.
Hence by 3.6, 3.7, 4.3, 4.4,

Q = Qo COos wlt, I = _leo Si.n wlt, 5-3

w, = (S/LY* = 1/(LCY"*, and LI’/2 + SQ?*/2 = 8Q:/2. 5.4

Thus the sum of the electromagnetic and electrostatic energies
in the system is constant, being independent of time. When
Q = 0 the energy is wholly electromagnetic, and when I = 0,
wholly electrostatic.

6. Mass sUSPENDED FROM SPRING This is illustrated in
Fig. 6.1A. The weight or gravitational force W = mg causes
an extension h = mg/s, which fixes the equilibrium position,
i.e. it in effect moves the origin from z = 0 to z = h. Accord-
ingly in 3.2 we write (x — h) for 2, and obtain

i+ oz = wfh, 6.1
of which the complete solution with two arbitrary constants is

z = A cosw,t + Bsinw,t + &, 6.2

or (x — h)

A cos w,t + B sin w,t. 6.3
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Hence motion of the mass in the systems of Figs. 2.1A, 6.1A
about their respective equilibrium positions, is identical.

unstrained L
length
X=0
equtlibrium “=h |-—-1||
position I C E
i
w=mg Fig. 6.1B
Fig. 6.1A

Electrical analog. This is shown in Fig. 6.1B, where E, is a
constant p.d. analogous to the force mg. The D.E. is

Larjat+ 8 [ 1d =B, = 8@, 6.4
where Q, is the charge on C corresponding to a p.d. E, . Then
with I = @, 6.4 becomes

L+ 8Q - Q) =0, 6.5

or Q + »’Q = &0, . 6.6

Comparison with 6.1 shows that A ~ @, . The complete solution
of 6.6 is, by 6.2

Q = A coswt + Bsinw,t + @, ; 6.7

also I =Q = w(—A4singt+ B coswl). 6.8

IfQ =Q,and I = Owhent =0, 6.7 gives 4 = (@, — Q.),
while from 6.8 B = 0. Using these values in 6.7, 6.8, yields

Q@ = (@ — Q.) cos w,t, 6.9

and I = "'Ul(Qo - Ql) Sin wll. 6.10
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7. PNEUMATIC STIFFNESS Fig. 7.1 depicts a sealed enclosure
of volume v, fitted with a short tube in which a rigid disk of
area A and mass m, can move freely. If displaced either inwards

rigd
disk
area A

Fig. 7.1

or outwards, the disk will oscillate along its axis, in virtue of
the ‘stiffness’ due to the enclosed air. Assuming adiabatic
change, we have

w’ = C, a constant, 7.1

S0 d(pv")/dx = ypv" ‘dv/dx + v'dp/dz = 0. 7.2
Multiplying by Av™" gives

(ypA/v)(dv/dx) = —A(dp/dx) = s, 7.3

the stiffness or force per unit displacement. The minus sign
indicates that p increases with decrease in v, and vice-versa, in
virtue of the negative slope of the adiabatic curve. Since
dv = Adz, if p, is the static external air pressure, 7.3 gives

s = vA%qy /v, . 7.4

This is valid provided, (a) the displacement is such that the
working arc of the ‘characteristic’ may be represented ade-
quately by its tangent, (b) the internal pressure change is
almost in phase everywhere, i.e. the wave length of sound >
the largest dimension of the enclosure.

During vibration, the mass of the disk is increased by virtue
of the cyclically varying motion of the air in its neighborhood.*
The additional mass is termed the ‘accession to inertia’ m, (10].
For a disk radius a metre, as in Fig. 7.1, it is sensibly constant
if aw <140, but decreases with increase in w thereafter. The

*Qutside the enclosure.
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total mass is m, -+ m; = m, so by §3, the natural frequency
wy = (s/m)""? = {yA%po/vo(ms + m)}**. 7.5

If the disk were suspended by a narrow annular surround of
axial stiffness s, , the total stiffness would be s + s, , so

o = {(s + s)/m}"?, 7.6

where m would be greater than in 7.5, owing to the mass of
part of the annulus, and additional accession to inertia.

8. REDUCED DISCRETE SYSTEM Systems of the type indicated
in Fig. 8.1A, C having more than one spring, may be reduced

frictionless guide

m -——
S2
frictionless guide
Fig. 8.1A Fig. 8.1C
L L
C=1/S,
Ce1/S, CVS, Ca7l/Se
Fig. 8.1B Fig. 8.1D

to an equivalent single mass-spring arrangement. In the lan-
guage of electrical technology, the springs in Fig. 8.1A are in
series, while those in Fig. 8.1C are in parallel. The combined
stiffness in the first case is s = (s, + s,), which is analogous to
elastances S, , S, , (Fig. 8.1B) in series. For the second case,
neglecting the weight of the springs if m were suspended from
them, a force f causes extensions z, = f/s,, and 2, = f/s,,



11

respectively. Thus the total extension is
z=x + 2z = f/si + f/sa = f(1/s 4 1/s3), 8.1
so the stiffness of the combination is
s = force/extension = 1/(1/s, + 1/s,) = 8,8,/(s; +s;), 8.2

and s < either s, or s, . This is analogous to the elastances
S:, S, , (Fig. 8.1D) in parallel. The reduced system in either
case, being described completely by one coordinate, has one
degree of freedom, and the angular frequency is w, = (s/m)'.

9. LATERAL VIBRATION OF LOADED UNIFORM BAR Referring
to Fig. 9.1, we suppose the bar is vertical in its equilibrium

IIIIIIIIG
X X d-—1
r|Y
?,
£
t
Tyt
section at
X'X
¢ \m
- X
Fig. 9.1

position, and that its mass is negligible in cdmparison with that
of m. The relationship between static horizontal force f and
small displacement z is, neglecting the influence of the weight
of the bar and that of m,

z = f/3EI, 9.1

where I is the moment of inertia of the section of the bar about
Y'Y, and E the modulus of elasticity. Since I°/EI is constant,



