Data-Parallel Programming on
MIMD Computers

Data-Parallel Programming on
MIMD Computers

Philip J. Hatcher and Michael J. Quinn |

{ne MIT Press
Cambridge. Massachusetts
Londor England

Foreword

The world of modern computing potentiaily offers many heipful methods and tools to
scientists and engineers, but the fast pace of change in computer hardware, software, and
algorithims often makes practical use of the newest computing technology difficult. The
Scientific and Engineering Computation series focuses on rapid advances in computing
technologies and attempts to facilitate transferring these technologies to applications
in science and engineering. It will include books on theories, methods, and original
applications in such areas as parallelism, large-scale simulations, time-critical computing,
computer-aided design and engineering, use of computers in manufacturing, visualization
of scientific data, and human-machine interface technoiogy.

The series will help scientists and engineers to understand the current world of
advanced computation and to anticipate future developments that will impact their
computing environinents and open ﬁp new capabilities and modes of computation.

This book is the first in the series and describes data-parallel programming. In
general, parallel computation has not yet been fully assimilated into the world of practical
computer applications. Among the main reasons for this are limited portability of
parallel software and scarcity of programiming tools. Hatcher and Quinn suggest in
this volume that tne data-parallel model of computation offers programmers an approach
that overcomes some of these difficulties. Data-parallel programming is easy to learn
and can be used to solve many problems in science and engineering. Resulting codes
can be ported to radically different computer architectures in the shared-mer-ory and
message-passing machine classes.

The book suggests a very likely future trend for a practical and economically
justifiable mode of parallel computation.

Janusz §. Kowalik

Preface

MIMD compuiers are notoriously difficult to program. Typical MIMD programming
languages are too low-level and lack portability. One solution is to introduce a high-level
. notation that simplities programming, enhances portability, and provides compilers with
enough information t altow them to generate efficient parallel code. This book illustrates
how programs written in a high-level SIMD programming language may be compiled
and efficiently executed on MIMD computers—both shared-memory multiprocessors and
distributed-memory multicomputers. The language presented is Dataparallel C, a variant
of the original C*™ janguage developed by Thinking Machines Corporation for its
Connection Machine™ processor array. Separate chapters describe the compilation of
Dataparalle] C programs for execution on the Intel and nCUBE hypercube multicomputers
and the Sequent multiprocessor. later chapters document the performance of these
compilers on a vanety of benchmark programs and case studies.

We have designed this book to be suitable for several audiences. Some readers will
use this book to tearn more about high-level parallel programming languages. People
who want to study the problem of compiling languages for distributed- or shared-memory
parallel computers should also find this book helpful. Last, but not least, are those who
will use this book as a reference manual for the Dataparallel C programming language.
Real implementations of high-level portable parallel programming languages are still few
and tar between. We hope that our Dataparallet C compilers will stimulate research in
the areas of parallel algorithms and programming languages.

We want to emphasize that this book is a “snapshot” of the state of our compilers
in April 1991. We have seen significant improvements in the performance of many of
our compiled programs over the past several months, and we anticipate further gains, as
we continue to implement compiler optimizations.

The results we report in this book are largely due to the efforts of many graduate
students at the University of New Hampshire and Oregon State University. Charles A.
Grasso implemented the first generic host (ghost) program for the nCUBE™ 3200.
Jetfrey E. F. Friedl modified the University of Virginia’s Very Portable C Compiler
to generate code for the nCUBE node processors, developed the valuable UNIX™-10-
nCUBE and nCUBE-to-UNIX binary file conversion programs, and implemented the
second ghost program for the nCUBE. Karen C. Jourdenais designed and implemented
our first Dataparallel C compiler for the nCUBE. Lutz H. Hame! built the second-
generation Dataparallel C compiler for the nCUBE and ported the GNU C compiler
to generate code for the nCUBE node processors. Robert R. Jones built the front end

* is a registered trademark of Thinking Machines Corporation.

Connection Machine is a registered trademark of Thinking Machines Corporation.
nCUBE is a trademark of nCUBE Corporation.

UNIX iy a registerad trademark of AT&T Be!! Laboratories.

Xiv Preface

of the third-generation multicomputer Dataparallel C compiier. Anthony J. Lapadula
wrote the back end and optimizer for the third-generation muiticomputer Dataparallel C
compiler. Bradley K. Seevers designed, implemented, and benchmarked the Dataparallel
C compiler for the Sequent multiprocessor family, and he wrowe part of Section 4.5. Ray
J. Anderson ported Friedl's tool set to the Sun"-hosted nCUBE system, implemented
the routing and parallel 1/O libraries for the nCUBE and Intel multicomputers, and helped
test both the multiprocessor and the multicomputer compilers by programming a variety
of case studies. Margaret M. Cawley tested the multicomputer Dataparallel C compiler
by impiementing several case studies. David Judge implemented the first Dataparallel C
version of the shallow-water model. We thank these students for their splendid efforts.

We are pleased to have been able to collaborate with Andrew Bennett, Professor
of Oceanography at Oregon State University. Andrew developed the model used as the
basis of the ocean case study of Chapter 7, and he wrote parts of Sections 7.2 and 7.3.

We appreciate the careful proofreading and copy editing performed by Darcy J.
McCallum and Jenya Weinreb.

We would like to thank Bob Prior of The MIT Press, who encodraged us to write
this book, supported our efforts in a variety of important ways, and never gave us a hard
time when we missed our original deadline by almost a year. Thanks, Bob. We hope
this book is worth the wait.

We thank our families for their unconditional support: Peggy, Christina, and John;
Vicki, Shauna, Brandon, and Courtney.

Finally, we are grateful to the organizations that supported this research: the Na-
tional Science Foundation, the Defense Advanced Research Projects Agency, the Oregon
Advanced Computing Institute, Oregon State University, the Univeréity of New Hamp-
shire, and Intel Corporation. The Department of Computer Sciences at the University of
Wisconsin-Madison and the Advanced Computing Research Facility of the Mathematics
and Computer Science Division at Argonne National Laboratory gave us free access to
their Sequent Symmetry™ multiprocessors.

Sun is a registered trademark of Sun Microsystems, Inc.
Symunetry is a trademark of Sequent Computer Systems, Inc.

Contents

Foreword xi
Preface Xt
Chapter i Introduction |
FE o Termuoiogy 2
.2 Three HMustrative MIMD Computers 4
1.3 Parallel Programming Languages 8
14 Data-Faraliel Programming Languages 11
1.5 Data Parallelisin Versus Control Parallelism 13
1.6 Related Work . 18
1.7 Summary 21
Chapter 2 Dataparallel C Programming LLanguage Description 23
2.1 Virtual Processors 23
2.2 Global Name Space 26
2.3 Synchronous Execution » V 30
2.4 Pointers 33
2.5 Functions 35
2.6 Virtual Topologies 37
2.7 Iaput/Output) 39
2.8 The New C* 40
2.9 Summary: How Dataparallel C Extends C 41
Chapter 3 Design of a Multicomputer Dataparallel C Compiler 43
31 TTarget Software Environment 44
3.2 The Routing Library ' 49
3.3 Processor Synchronization S8
34 Virtual Processor Emuiation 66
A5 Jmplementing Global Name Space 70
3.6 Compiling Member Functions 79
3.7 Translation of a Simple Program 83

3.8 Summary 86

viii

Chapter 4 Design of a Multiprocessor Dataparallel C Compiler

4.1
4.2
43
44
4.5
4.6
4.7
48

Parallel Programming Under DYNIX
The Dataparallel C Run-Time Model
Data Flow Analysis

Introducing Synchronizations
Transforming Control Structures
Compiling Member Functions
Translation of a Simple Program

Summary

Chapter 5 Writing Efficient Programs

5.1
52
53
54

The Programmer’s Role
Tuning Multicomputer Programs
Tuning Multiprocessor Programs

Summary

Chapter 6 Benchmarking the Compilers

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Calculation of Pi

Calcuiation of Relatively Prime Numbers
Matrix Multiplication

Warshall's Transitive Closure Algorithm
Gaussian Elimination

Gauss-Jordan Method

Sieve of Eratosthenes

Triangle . . zzle

Summary

Chapter 7 Case Studies

71
7.2
7.3
74
7.5

Introduction

An Ocean Circulation Model
An Atmospheric Model
Sharks World

Summary

Contents

89
89

139
139
141
145
153
155
164
168
171
177

179
179
180
181
185
187

Contents

Chapter 8

Appendix A
Appendix B
Appendix C
Bibliography

Index

Conclusions
&1 Summary of Accomplishments
8.2 The Need for Performanc:-Monitoring Tools

8.3 Status of Language and Compilers
Performance Data for Intel iIPSC/2
Performance Data for nCUBE 3200

Performance Data for Sequent Symmetry

ix
189
1RO

193
195

197

201

Chapter 1
Introduction

Since 1985 vendors have announced a large number of multiple-CPU computers. Some
of these computers contain thousands of processors, and many systems can perform
hundreds of millions of floating-point operations per second. Unfortunately, the accom-
panying programming languages are not nearly as glamorous. The typical commercial
programming language is little more than a bag of parallel constructs hung on the side
of an existing sequential language, such as C or FORTRAN. These low-level parallel
languages lead to programs that are difficult to design, implement, debug, and maintain.

The research community has recognized the need for better paralle! programming
languages and has proposed dozens of alternatives. An examination of these languages
reveals that they represent virtually every possible answer to the fundamental design
questions. Should the parallelism be implicit or explicit? Should the language be
imperative, functional, or based on logic programming? Should the processes execute
" synchronously or asynchronously? Should the level of parallelism be fixed at compile
time, be chosen at run time, or be dynamic? Should the programmer view memory as
distributed or shared?

We anticipate that there will be a variety of successful higher-level parallel pro-
gramming languages available to programmers of MIMD computers in the next decade.
Our work has focused on data-parallel programming languages, languages in which you
express parallelism through the simultaneous application of a single operation to a data
set. We have three reasons to believe that data-parallel languages will assume an im-
portant role in the future of parallel computing: you can solve a significant number of
problems using data-parallel algorithms, it is easier to write data-parallel programs for
these problems than programs written using lower-level parallel constructs, and compilers
can translate data-parallel programs into efficient code.

This book describes the implementation of two compilers for the data-parallet
programming language Dataparallel C. The target machines are from two radically
different MIMD architecture classes: distributed-memory multicomputers and shared-
memory multiprocessors. We have claimed that compilers can translate data-paralle!
programs into code that executes efficiently on MIMD architectures. We validate our
claim by benchmarking the performance of the code produced by our two compilers on A

2 Chapter |

a wide variety of programs, which we execute on the Intel iPSC™/2 and nCUBE 3200
multicomputers and the Sequent Symmetry multiprocessor.

Few high-icvel parallel programming environments arc available to those who want
to solve problems on parallel computers or design new parallel algorithms. We hope
that these compilers. which can produce code for workstations. multiprocessors, and
multicomputers, will stimulate further research in parallel computing.

In this chapter we define a variety of paralicl computing terms. present the target
architectures, and contrast various approaches to programming MIMD computers. We
describe what we mean by “data-parallel algorithm.” and we contrast data-parallel and
controi-parallel approaches to the parallelization of the classic prime-finding algonthm,
the Sieve of Eratosthenes. We end with a survey of related work.

1.1 Terminology

The parallel computer terminology we use in this book is fairly standard; you can find
more detailed explanations of the terms in Quinn, 1987. A multiprocessor is a shared-
memory mulliple-CPU computer designed for parallel processing. In a tightly coupled
mudtiprocessor all the processors work through a central switching mechanism to reach
a shared global memory. Some people call this a uniform memory access (UMA)
multiprocessor. A multicomputer is a multiple-CPU computer designed for paraliel
processing, but lacking a shared memory. All communication and synchronization
between processors must take place through message passing.

Flynn's taxonomy of computer architecture is the basis for a variety of programmer
models of parallel computation (Flynn, 1966). A programmer can view a.SIMD t(single
instruction stream. multiple data stream) computer as a single CPU directing the activities
of a number of arithmetic processing units, each capable of fetching and manipulating
its own Jocal data. Another common name for this model is processor array. Since
the processing units work in lock step under the control of a single CPU, we call this
programming model synchronous. SIMD models can vary in two respects. First, the
number of processing elements may be fixed or unbounded. Second, the way in which
processing eiements interact can vary. For example, a mesh-connected model organizes
the processing elements into a mesh: processors may only fetch data from their immediate
neighbors. On the other hand, in a global name space model, the processing elements
may directly access the memories of the other processing elements.

A data-parallel model of parallel computation is a SIMD model with an unbounded
number of processing elements and a global name space.

A MIMD (muluplie instruction stream, multiple data stream) computer allows the
concurrent exccution of multiple- instruction streams, each manipulaxing its own data. A

WPSC s reg\sn:rcd“lmdemmk of intel Corporation.

Introduction 3

MIMD programming language must include some communication and synchronization
primitives in order for the processes corresponding to the various instruction streams to
coordinate their efforts. It is possible for every processor in a MIMD computer to execute
a unique program. However. it is far more common for every processor to execute the
same program. SPMD (single program, multiple data stream) programming puts the
same program on every processor (Karp, 1987). Although you can expect processors
to coordinate with each other at synchronization points, we call the MIMD and SPMD
programming models asynchronous, because between the synchronization points every
processor executes instructions at its own pace.

Speedup is the ratio between the time needed for the most efficient sequential
program to perform a computation and the time needed for a parallel program to perform
the same computation. where the sequential program executes on a single processor of
a parallel computer and the parallel program executes on one or more processors of the
same parallel computer. Scaled speedup is the ratio between how long a given optimal
sequential program would have taken, had it been able to run on a single ‘processor
of a paralle] computer, and the length of time that the parallel program requires, when
executing on a multiple processors of the same parallel computer (Gustafson ez al., 1988).

The difference between the two speedup definitions is subtle, yet important. In order
to measure speedup, the algorithm must run on a single processor. On a multicomputer,
that means the problem data must fit in the memory of that one processor. Far larger
probiems can be, and usually are, solved by systems with hundreds or thousands of
processors, but the restriction that the problem be solvable by a single processor means
that these large problems cannot be used when determining the speedup achieved by the
parallel machine. The definition of scaled speedup allows the solution of these realistic,
large problems on a multicomputer and the estimation of the execution time that would
have been required if the same problems had been solved on a single processor with a
massive primary memory.

The Amdahl effect is the observation that for any fixed number of processors, speedup
- is usually an increasing function of problem size. Because the definition of scaled speedup
allows you to apply the parallel computer to larger problems, the scaled speedup achieved
by a particular program is usually larger than the program’s speedup. For éxample, three
scientific codes implemented by Gustafson er al. achieved speedups of 502 to 637 on a
1024—processor nCUBE 3200, while the scaled speedups achieved by these algorithms
ranged from 1009 to 1020 (Gustafson er al., 1988).

Our definition of speedup requires that you compare the execution time of the parallel
program with the execution time of the best sequential program. Sometimes you can
casily determine the best sequential program, but often it is not clear which sequential
algorithm is fastest for a particular domain. Another measure of the performance of a
parallel program indicates the reduction in execution time achieved as processors are

4 ’ ' Chapter 1

added Parallelizability is the ratio between the execufion time of a paraliel program on
one processor and its execution time on multiple processors. Many so-called “speedup
curves” that appear in the literature aré actually illustrations of the parallelizability of
the parallel program.

Of course. the purpose of parallel computers is to reduce the time needed to solve
particular problems, and given the variety of analyses appearing under the single name
“speedup.” the least controversial measure of the performance of a parallel program may
well be its speed. not its speedup. For this reason we include as part of our performance
data later in the book the execution times of the compiled Dataparallel C programs.

The efficiency of a parallel program is its speedup divided by the number of
processors used. For example. a parallel program that achieves a speedup of 32 on
64 processors exhibits an efficiency of 50%.

Cost 1s a measure of the total number of operations performed by a sequential or
parallel algorithm. We define the cost of an algorithm to be the product of its complexity
and the number of processors used. For example. the cost of a sequential binary search
algorithm is ©{logn), where n is the length of an ordered list. Imagine a parallelization
of binar. search for a multiprocessor that gives each of p processors n/p contiguous
list elements. Ignoring process creation overhead. the worst-case time complexity of the
parallel algorithm is ©log{n/p}): the cost of the parallel algorithm is O(plog(n/p)),
which means that the parallel algorithm performs more operations than the sequential
algorithm when p > 1. If the cost of a parallel algorithm is greater than the cost (i.e.,
complexity) of the best sequential algorithm. then the parallel algorithm cannot maintain
high efficiency as the number of processors increases.

A barrier synchronization is a point in a program beyond which no process may
proceed until all processes have arrived. The grain size of a program is the relative
number of instructions performed per barrier synchronization.

1.2 Three Illustrative MIMD Computers

Sequent Symmetry

The Symmetry S8, manufactured by Sequent Computer Systems, Inc., is a tightly
coupled muiltiprocessor that can include up to 30 Intel 80386™. CPUs and between
8 and 240 megabytes oi primary memory (Figure 1.1). In systems that use a bus
as the central switching mechanism, bus contention has traditionally been the primary
factor limiting the number of CPUs that can be utilized. The Symmetry architecture
addresses this problem in three ways. First, the bus is 64 bits wide and is able to achieve
a sustained transfer rate of 53.3 Mbytes per second. Second, each processor has its

[ntel 386 is u registered trademark of Intel Corporation.

Introduction ' 5

Ethemnet
Terminal' . Console
MUX |
Parailel Multibus - S130 (8240 ScED .
Printer - —— - [nterface - - -- - Adapter 32-bit : Mbytes Board
: Imerface(s)j Board ‘Board CPUs Memory o
o % R .
s S . SysemBus
Tape SO = S
_Controllerts} i = Dual-Channel
< . Disk e
T T lCOl’l[rO“eﬂs‘} _S>CS‘I‘7B”L“77 o
Synchronous o [e
Communication | Custom e)
Controller(s) | iDevices Tape Target Disk Target
(Optionai) T Adaprer Adaprer

ERRTS e

X.25 Network
Figure 1.1. Architecture of the Sequent Symmetry S81 multiprocessor.

own 64-Kbyte, two-way set-associative cache memory to reduce traffic on the system
bus. Custom VLSI logic ensures cache consistency without requiring a write through
operation to.main memory every time shared data is modified. Third. every CPU has an
associated System Link and Interrupt Controller (SLIC) to “manage system initialization.
interprocessor communicatior, distribution of merrupts among CPUs, and diagnostics
and configuration conirol” (Sequent, 1987). These SLIC chips are connected with a
separate bit-serial data path called the SLIC bus. Still, Symmetry computers have. at
most 30 CPUs, a relatively low ceiling.

nCUBE 3200

The nCUBE 3200 (originally calied the nCUBE/ten) was the first commercial MIMD
computer offered with more than 1.000 proeessors. A fully-configured nCUBE 3200
contams 1,024 custom 32-bit processirs, each controlling 512 Kbytes of local memory.
These node processors are arranged as a ten-dimensional hypercube (see Figure 1.2;.
Hypercube iinks represent the paths along which messages between nodes may travel.
An Intel 80286™ host processor serves as a front-end computer, managing the hvpercube

286 15 o registered trademark ot Intel Corporaticn.

6 } Chapter 1

7N . /_\L___“v ™ e
o0 ©O—0
\ ! \
| ‘ LN -
i i bl a——75)
o~ AN '
(—3) 2—F3)
N ~— \/\ : ~__< i
N,
\/:\ \vj‘
(6 L7
~— N
9
g—3)

Figure 1.2. One-, two-, three-, and four-dimensional hypercubes. A k-dimensional hypercube
has 2% nodes, labeled 0...2% — 1; two nodes are adjacent if their labels differ in
exactly one bit position. Many muiticomputers, including the nCUBE 3200 and
the Intel iPSC/2. use the hypercube processor organization.

Ethernet

|
1

~S.n SPARCserver
(optional Front End)

R ATt
}

IDR-11W
e

Intel 80286 |
| Front End | | (228 Chann

: i
;

ﬁ 1-16 processor boards 0-7 I/O boards
! Dis
_//

@_Tg_@,. l/OBoard i
. (optional) i

Figure 1.3. Architecture of the nCUBE 3200 multicomputer.

of processors as well as the I/O devices. An option later offered by nCUBE relegates the
host processor to the role of intermediary between the nodes and a Sun SPARCserver,
which takes over the role as front-end processor (Figure 1.3).

¢

The existence of a front end relegates the node processors to the status of being
a computational back end. This distinguishes the nCUBE 3200 from the Sequent
Symmetry, in which every processor has direct access to the I/O devices. Multicomputers
do not necessarily have a front end, although virtually all first-generation commercial
multicomputers, including the Intel iPSC and Ametek S/14, make use of a host processor.
One explanation for this may be that these machines trace their ancestry to-a common
source, Caltech’s Cosmic Cube (Seitz, 1985).

’

,d_’“/:/

Introduction - 7

e 30386 80386
" Numerc “Numeric | “Numeric
| Coprocessor |_|Coprocessor | __Coprocessor

\
ey Memorv ’

|

Dmect -Connect | R Dixect-Connect '

Figure 1.4, When a message is passed between nonadjacent nodes on the Intel iPSC/2,
the Direct-Connect Modules along the path between the nodes establish
a circuit. which aliows the message to be sent from the source to the
destination without being stored and forwarded at the intermediate nodes.
The CPU's of the intermediate nodes are not interrupted.

The nCLBE 3200 uses store-and-forward message routing. If a node processor
sends a message to a nonadjacent node processor, each intermediate processor stores the
entire message bef »ro forwarding it to the next processor along the message’s path.

Intel iPSC.2

The Intel iPSC/2is a second-generation multicomputer, but in many ways the architecture
resembles that of the nCUBE 3200. The node processors are organized in a hypercube
tonology. This back end may contain up to 128 processors. A System Resource Manager
~erves as the front end, connecting the back end with the outside world via Ethernet.
The Svstem Resource Manager is responsible for allocating and deallocating back-end
processors and loading the prograiis that execute on the back end.

The most tmportant characteristic thar distinguishes second-generation multicompur-
ers, such as the Intel iPSC/2, from first-generation multicomputers, such as the nCUBE
3200. is the elimination of store-and-forward message routing. In addition to an Inte!
80386 L PU. every iPSC/2 node contains a routing logic daughter card called the Direc:
Connect Module™. The Direct-Connect Modules set up a circuit from the source node
.« the cestinaiion node. Once the circuit 1s set up. the message flows in a pipelined
fashion from the source node to the destination node—none of the intermediate nodes
store (. message. ~ message being passed from one node to a nonadjacent node does
not interrupt the CPUs of the intermediate nodes: only the Direct-Connect modules are
involved (Fig.re 1.4y,

Direct-Connect Module 1. s trademark of Intel Corporation.

8 Chapter 1
1.3 Parallel Programming Languages

Programming parailel computers is widely held to be more difficult than programming
sequential computers, but much of the blume can be traced to the programming languages
used. Chen has pinpointed a central difficulty in programming parallel computers: How
can vne reason about a parallel program that embodies concurrent and distributed state
changes among a-large nuriber of processes (Chen, 1987)? If programmers cannot reason
about the behavior of their programs. how can they be expected to produce correct.
maintainable code?

“In this section we examine a variety of ways proposed to program multiprocessors
and multicomputers using mmperative programming languages. First we consider the
alternative of programining a parallel computer in 4 conventional sequential language.
Next we focus our attention on the parallel C languages provided by Sequent Computer
Svstems and nCUBE for their respective machines. Finally, we consider the advantages
o1 higher-level parallel programming languages. In each case we consider the model
of computation piesenied to the programmer and two other important attributes: how
efficiently the translated program can be made to run on the underlying machine, and the
portability of the parallel program to different architectures. If a parallel programming
languuge i~ 1o be widely adopted. compiled programs must take good advantage of the
resources provided by the target machine. Portability is a particularly important atiribute
ot a parallel programming language. because programs are a valuable commodity that
cannot be discarded casually.

Conventional Programming' Languages

One solution to the problem of finding a suitable language for programming parallel
computers is to stick with an existing imperative programming language. such as FOR-
TRAN or C. and let a parallelizing compiler detect and exploit the parallelism in the
program. Conventional programming languages present the programmer with a straight-
forward, understandable model of computation based on the single instruction stream,
single data stream von Neumann computer. No retraining of programmers is needed,
and the huge amount of existing software. those legendary “dusty decks™ of FORTRAN
cards, can be kept.

However, the use of a sequential language pits the programmer against the compiler
in a game of hide and seek. The algorithm may have a certain amount of inherent
caruiteism The programme s indes the parallehism in a sea of DO loops and other control
structures. and then the compiier musy seek it out. Because the programmer may have to
spect{s anaee od 0 onbaizahons when writing programs in a conventional imperative
nguaye. or parailelism may be wretrievably lost. Explicit parallelism is invaluable
Lnen irong sxectte rroums efficiently on parailel hardware. The introduction of

Introduction 9

parailel and/or vector operations into the proposed new FORTRAN standards signifies an
acknowledgment by the user community of this principle.

Languages with Low-Level Parallel Constructs

It is not surprising that paralle! programming languages with low-level paralle! constructs
are widespread, given the history of parallel computers. Froin the days of the first Cray-1,
. which was delivered without a compiler, to modern parallel computers. the development
of innovative hardware has kept ahead of the development of equally sophisticated
software. A conventional programming language enhanced with a few constructs allowing
the user to create and synchronize parallel processes is the simplest avenue to take. since
it puts the least burden on the compiler writer.

Multiprocessor Programming Languages A multiprocessor programming language must
have constructs to spawn and terminate parallel processes. manage :ynchronization be-
tween processes, and distinguish bet{ween private and shared data.

In Sequent Parallel C, for example. the m_fork function forks off a set of parallel
processes to execute a function. The processes suspend execution when they reach the
end of the called function. Other functons allow for mutual exclusion of processes
in critical sections, and the keyword shared ailows the user to designaie global data
accessible by all processes.

These low-level constructs can make programs very difficult to debug. Even
programs a few dozen lines long can yield numerous, troublesome bugs (Allan and
Oldehoeft, 1985: McGraw and Axelrod. 1988; Storc, 1988). It is hard to eliminate timing
errors (McGraw and Axelrod, 1988). A general lack cof debugging tools often forces
. programme;: to return to paper, pencil. program listings, and hand tracing (McGraw and
Axelrod. 1988).

These programming languages are often less elegant than those languages developed
in the 1970s for the purpose of implementing multiprogrammed operating systems,
ncluding Concurrent Pascal, Modula. and Pascal Plus. Pascal Plus, for example, has
the following facilities for parallel programming:

L.

Y

the process, which identifies the parts of 4 program that may execute in parallel:
the monitor structure. which guarantees mutual exclusion of processes accessing
shared data; and

the condition. ahich allows synchronication of processes.

However. ater imptementing the system software for C.mmp. Wuif er ui. concluded

ateont constructs ~uich as monitors may not help (Wulf er ¢f.. 1981). Managing
sarailelism and synchronization exglicitly is 4 time-consuming and error-prone activity.

