; -Assembly

; _anguage

{ Programming
and

Machine

,+ Organization

L Vg A [™) r & A A » 4 i.. A
| 4 - ¥ A Yy - =~
\ \ \ R. -

Ed Wishart
University of Nevada—Reno|

Allyn and vacun, i,

Boston London Sydney Toronto

UNIX® is a registered trademark of AT&T.
The following are trademarks of Control Data Corp:
CDC¥®, CONTROL DATAZY, Cyber.)
The following are trademarks of Digital Equipment Corporation:
PDP, DEC, VAX, VMS, UNIBUS, RT-11, MICROVAX,
Professional, Q-Bus, VT, RSTS, RSX, J-11, MACRO-11, LSI-11
The following are trademarks of International Business Machines Corporation:
IBM?, MVSix

Copyright © 1987 by Allyn and Bacon, Inc.
7 Wells Avenue, Newton, Massachusetts 02159

All rights reserved. No part of the material protected by this
copyright notice may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording,
or by any information storage and retrieval system, without written
permission from the copyright owner.

Series Editor: John Sulzycki

Production Coordinator: Sue Freese

Editorial/Production Services: Linda Zuk, WordCrafters, Inc.
Cover Coordinator: Linda K. Dickinson

Cover Designer: Susan Hamant

Library of Congress Cataloging-in-Publication Data
Wishart, Ed.
Assembly language programming and machine organization.
Includes index
1. PDP-11 (Computer)—Programming. 2. Assembler
language (Computer program language) 1. Title.
QA76.8.P2W57 1987 005.2'45 86-20553

ISBN 0-205-10477-0

Printed in the United States of America

10 9 87 6 5 43 21 90 89 88 87 86

This book is an introduction to assembly language programming and computer archi-
tecture done in the context of two computer architectures: SIMPLE and Digital’s
PDP-11. Memory organization, registers, instruction sets, addressing modes, /O sys-
tems, interrupt structures, and bus communication are some of the major topics
covered. In addition to these hardware concepts, software concepts such as subrou-
tine linking, parameter passing, conditional branching, macros, floating point arith-
metic, recursion, and modular program design are important topics in this book. In
short, this is a text for CS-3, the third course of ACM’s Curriculum ’78. CS-1 and
CS-2 are courses in programming and algorithms in the context of high level
languages and should be considered prerequisites for a course based on this text.

Program execution, input, output, and termination require the assistance of the
host operating system. The method by which this assistance is obtained is illustrated
for two operating systems used on PDP-11 computers: UNIX and RT-11 (and the
RT-11 emulation within RSTS/E). This assistance is requested by means of system
calls, which function similarly in every operating system, but differ in syntax. There-
fore, this text can be used profitably with any operating system running on the PDP-
11 that supports MACRO-11; one need only consult software manuals or local wis-
dom about the form of the system calls once it is known what assistance is needed.

xi

xii Assembly Language Programming and Machine Organization: PDP-11

PLAN FOR THE TEXT

Chapters 1 through 8 make up the core of the book, and it should be possible to cover
them in depth in a one-semester course and still have time to survey the material in
the rest of the text. Chapters 9 through 11 cover more advanced material such as
floating point arithmetic, recursion, bus communication, virtual computers, and an
overview of CISC versus RISC. Some of these topics are not normally part of an
introductory assembly language course—they are included for the sake of the curious
and to provide a reference for future studies. Chapter 12 is meant to prepare students
for the term programs of Chapter 13 by leading them through the step-by-step design
and coding of a 500-line MACRO-11 program—a SIMPLE emulator for Chapter 1.

Chapter 1 introduces many machine and assembly language concepts by means
of a simulated decimal computer that we call SIMPLE. Its 1950s architecture and its
ability to function with no supporting software (editors, assemblers) enables students
to begin programming almost immediately. Of course, to get the full benefit of this
chapter, students should execute their programs on a SIMPLE machine. A SIMPLE
emulator written in MACRO-11 is developed in Chapter 12 and listed in Appendix G.
Other emulators written in C and Pascal are available from the author. Advanced stu-
dents or those wishing to learn MACRO-11 sooner may skip Chapter 1 and refer to it
only as needed. SIMPLE is a source of an occasional exercise throughout the book,
the most notable being a cross assembler outlined in Chapter 13.

Chapter 2 covers data representation, with particular attention paid to changing
the representation of integers from one base to another. Chapter 3 introduces the
MACRO-11 assembly language in the context of writing and reading character data
to and from the user’s terminal. This is done almost entirely with high-level language
concepts such as assembler directives and programmed requests or system calls.
Chapter 4 introduces the PDP-11 architecture by explaining 16 instructions and four
addressing modes, as well as the PDP-11°s register and memory organization.
Chapter 5 explains the system stack and its use in subroutine linking, as well as seven
more instructions. Chapter 6 completes the explanation of the basic PDP-11 architec-
ture by covering the four remaining addressing modes, the details of conditional
branching, the logical instructions, and the shift/rotate instructions. In addition,
Chapter 6 illustrates subroutine communication utilizing addressing modes 3, 5, 6,
and 7. Chapter 7 explains macro definition, reference, and expansion with several
examples of macros to permit programming at higher levels of abstraction. Chapter 8
explains traps and interrupts, and contains examples of code to decode traps and
respond to I/O interrupts.

Preface X

Chapter 9 explains floating-point number formats and the floating-point instruc-
tion set, as well as recursion in the assembly language setting. Chapter 10 explains
how communication takes place on two computer buses: a hypothetical MINIBUS
and Digital’s UNIBUS. Normally this topic is not part of CS-3, but it is covered
because the UNIBUS and Q-bus have played such a major role in the evolution of the
PDP-11, and the cost in terms of bus time for instruction and operand fetch is such a
large part of instruction execution time. In addition, memory mapping and context
switching is covered. This chapter contains a fair amount of detailed material that the
author surveys in one or two lectures. Chapter 10 provides a good lead into Chapter
11, since it exposes the subterfuge of operations carried out in memory such as
“ADD A, B’’. Chapter 11 looks at zero- and three-address instruction formats, and
virtual computers built with microcode, and compares complex instruction set com-
puters (CISC) with reduced instruction set computers (RISC).

Chapter 12 and 13 go together. Chapter 12 explains a program design metho-
dology directed towards making the term programs of Chapter 13 more enjoyable by
reducing frustration and increasing the probability of success. This incremental
design methodology is illustrated by building a SIMPLE emulator in MACRO-11.
This chapter also illustrates several programming techniques not covered elsewhere
in the text: file access, jump tables, and the catching of keyboard interrupts. Chapter
13 contains detailed outlines for five term programs that require 300 to 600 lines of
code to complete. Students at this stage in their computer science studies need
experience in managing software projects—these programs are meant to give them
this experience. The author allows two students to work together on a program; this
usually improves the result and makes the project more fun, as well as providing
experience with team programming,

The 95 pages of appendices are meant to make the text as self-contained as
possible by listing all instructions, programmed requests/system calls, directives, and
error codes in systematic fashion for ease of reference. A Glossary and Index provide
additional aid to the students.

In addition to being a book about bits and bytes and the role they play in com-
puting, this text emphasizes structured programming. Like all assembly languages,
MACRO-11’s primary control structure is the conditional branch (GOTO). However,
by using the abstractions provided by subroutines, macros, and defined constants, one
can write modular programs. If these modules are well commented and have narrow
and well-defined interfaces with each other and cause no side effects, then the result-
ing program should be understandable and hence maintainable. This captures the

essence of structured programming much better than the simple avoidance of
GOTO:s.

xiv Assembly Language Programming and Machine Organization: PDP-11

A word about the exercises. The best way to deepen and verify understanding
of the concepts presented is to do the exercises. Exercises that involve the writing of
code are either a complete program or a subroutine, and thus can be tested by execu-
tion. There are no "dry labs." For many of us, mastery of computer science, like
writing and mathematics, requires active participation—it is not a spectator sport.

ACKNOWLEDGMENTS

I owe thanks to many for help with this book; without them it would not have been
completed. First, there are the fond memories of a first class of 10 students and a lit-
tle L.SI-11 that introduced us to the beauty of the PDP-11 architecture many years
ago. Second, there are the hundreds of students who responded to my enthusiasm
about assembly language and endured the early stages of the manuscript.

Third, heartfelt thanks are due to Ted Sarbin, head of Bally Systems in Reno,
but formerly of Digital Equipment Corporation, for sharing his immense and intimate
knowledge of PDP-11 hardware and software with me. In several places, his criti-
cism made for a much clearer presentation.

Fourth, thanks are due the staff at Allyn and Bacon: John Sulzycki for his
enthusiastic support, Sue Freese for giving the book a coherent and crisp appearance,
Linda Zuk for her expert editing that made it read so much better. Thanks also to
Mary Jeffreson and Richard Stewart for constructing the index. Fifth, thanks to the
reviewers for their thoughtful and informative input: Steven Stepanek and Fred
Gruenberger of California State University at Northridge; Robert Trenary of Western
Michigan University; Joseph G. Tront of Virginia Polytechnic Institute and State
University; Maarten Van Sway of Kansas State University; and Walter Piotrowski of
SUNY-Binghampton.

Finally, I thank my family for bearing with me during the seemingly endless
hours and late nights that this project took to complete. Thanks to Kathy, for being a
good sport about the late nights, to Eric for his enthusiasm for life, and to Michael for
following his Dad into the exciting world of computer science; to him this book is
dedicated.

E. W.

PREFACE xi
1. COMPUTER ORGANIZATION VIA SIMPLE 1

A simulated four-digit decimal computer gives a gentle introduction to machine
organization and machine language programming and allows us to start pro-

gramming immediately.
1.1. Fundamental Computer Concepts, 1
1.2. SIMPLE, 7
1.2.1. Memory, 9
1.2.2. Input/Output, 10
1.2.3. Central Processing Unit, 11
1.2.4. Instruction Set, 13
1.3. Assembly Language, 17
1.4. The Console, 30

Summary, 34

Exercises, 35

™
m

iv

2. DATA REPRESENTATION - All About Bits and Bytes 39

An understanding of the representation of data and the differences between the
internal and external representation is necessary to exploit the power of assem-

Assembly Language Programming and Machine Organization: PDP-11

bly language.

2.1.
2.2,

2.3.

24.

2.5.
2.6.

Positional Notation for Positive Integers, 39

Changing the Representation of Numbers from One Base to
Another, 43

2.2.1. Arithmetic in the Notation of the Target Base, 44
2.2.2. Arithmetic in the Notation of the Original Base, 47
2.2.3. Arithmetic in the Notation of a Third Base, 50
2.2.4. Conversion Among Binary, Octal, and Hexadecimal, 51
Negative Integers, 53

2.3.1. Ones’ Complement Notation, 53

2.3.2. Two’s Complement Notation, 56

Coding, 58

2.4.1. ASCII, 59

2.4.2. Parity, 60

2.4.3. Examples of Data Representations, 61

BCD, 63

Data Communication, 64

Summary, 67

Exercises, 67

3. GETTING STARTED IN MACRO-11 — Communicating with

Your Terminal 73

We take our first steps in MACRO-11 by writing and reading character data to

and from our terminal,

3.1

3.2.

MACRO-11, 74

3.1.1. Statement Format, 74

3.1.2. Types of MACRO-11 Statements, 75
3.1.3. Labels, 77

A First Program: HELLO WORLD! 79

Contents v

4.

5.

3.2.1. Creating Text in MACRO-11 Programs, 80
3.2.2. Sending Text to the Terminal, 81

3.3. Documenting Your Programs, 86

3.4. A Second Program: ECHO, 87
3.4.1. Reading with RT-11, 88
3.4.2. Reading with UNIX, 89

3.5. Assembly and Execution of MACRO-11 Programs, 90
3.5.1. Assembly and Execution under RT-11, 92
3.5.2. Assembly and Execution under UNIX, 93
3.5.3. Error Messages During Assembly, 94

Summary, 94

Exercises, 95

INTRODUCING THE PDP-11 — CPU, Memory, 16
Instructions, Four Addressing Modes 97

The complexity of the PDP-11 is uncovered a little at a time. Knowledge of
one-fourth of the instructions and half of the addressing modes let us start writ-
ing useful programs,

4.1. Memory, 99

4.2. The Central Processor, 102

4.3. Sixteen Instructions, 105

4.4. Addresses, Values, and Expressions in MACRO-1 1, 110

4.5. Addressing Modes, 114

4.6. Machine Language Representation of Some Instructions, 117

Summary, 123

Exercises, 124

STACKS, SUBROUTINES, AND SEVEN MORE
INSTRUCTIONS 129

Subroutines are the most important programming tools available to the assembly
language programmer. They provide the abstraction and modularity that are
necessary to design, write, and maintain large programs.

5.1. Stacks, 130

vi

Assembly Language Programming and Machine Organization: PDP-11

5.2. Subroutines, 132
5.2.1. Getting There and Getting Back, 133
5.2.2. Linking the Modules Together, 136
5.2.3. Parameter Passing, 140
5.2.4. Saving Registers, 143

5.3. How Big is Small? 147

5.4. Seven More Instructions, 150

Summary, 155

Exercises, 156

THE PDP-11 CONTINUED - More Addressing Modes,
Branching, Logical Instructions 161

Except for a few miscellaneous instructions, this chapter completes the descrip-
tion of the PDP-11 as viewed by the applications programmer. The remaining
instructions belong in the domain of the systems programmer.

6.1. Double Indirect and Indexed Addressing, 161
6.2. The Condition Codes: Carry and Overflow, 178
6.3. Signed and Unsigned Conditional Branches, 182
6.4. Instructions That Operate on Bits, 187

6.4.1. Logical Instructions, 187

6.4.2. Shift and Rotate Instructions, 190

Summary, 192

Exercises, 193

7. MACROS 199

Macros provide a second method for abstracting details of program design and
managing complexity. Since they are "called" at assembly time, parameters are
passed lexically rather than by value or location; this method has surprising
power,

7.1. Parameters, 202
7.2. Labels within Macros, 207
7.3. Conditional Assembly, 209
7.4. Repetition, 213

Contents vii

7.5. Placement of Macro Definitions, 215
7.6. Listing the Macro Expansion, 217
Summary, 218

Exercises, 220

8. TRAPS AND INTERRUPTS 223

Traps and interrupts provide a method of transfer of control with a new dimen-
sion: changing the contents of the processor status register.

8.1. Traps, 226
8.2. Interrupts, 231
8.3. Role of the PS in Traps and Interrupts, 238

Summary, 239

Exercises, 240

9. ADVANCED TOPICS - Floating Point Arithmetic and
Recursion 241

Floating point arithmetic lets the PDP-11 do scientific computations. Recursion
gives us a new method of problem solving; implementing it in assembly
language strips away the mystery of recursion in high level languages.

9.1. Floating Point, 241
9.1.1. Representation of Floating Point Numbers, 242
9.1.2. Floating Point Operations, 246
9.2. Recursion, 253
9.2.1. Examples of Recursive Definitions, 255
9.2.2. Implementing Recursion, 260
9.2.3. Recursion in MACRO-11, 262
Summary, 269

Exercises, 270

10. THE UNIBUS AND MEMORY MANAGEMENT 273

The UNIBUS is the glue that ties the components of a PDP-11 computer sys-
tem together by letting them communicate with each other. The memory

viii

11.

12.

Assembly Language Programming and Machine Organization: PDP-11

management unit is the hardware device that separates virtual memory from a
larger physical memory and enables the computer to support a multiuser
environment.

10.1. Buses, 274

10.2. Communication Via the Minibus, 277

10.3. Communication Via the UNIBUS, 282
10.3.1. A Bus Read Cycle, CPU as Bus Master, 284
10.3.2. Nonprocessor Request (DMA) Bus Cycle, 286
10.3.3. Bus Interrupt Cycle, 288

10.4. Memory Management, 291

Summary, 300

Exercises, 301

POTPOURRI 303

Chapter 11 takes a brief look at other computer organizations with regard to
addressing, the implementation of virtual computers via microcode, and com-
plex instruction set computers versus reduced instruction set computers.

11.1. Addressing Methods, 303
11.2. Virtual Computers and Microprograms, 305
11.3. CISC versus RISC, 307

INCREMENTAL PROGRAM DESIGN VIA AN EXAMPLE
— A SIMPLE Emulator 311

To prepare you to handle the term programs in Chapter 13, we illustrate a
design methodology that allows the design, coding, and testing to proceed in
unison. By this means we can keep the amount of code that is being designed,
written, and debugged to about a page, for example about the size of ADTOB
from the exercises of Chapter 6.

12.1. Incremental Program Design, 311
12.2. An Example of Incremental Design: A SIMPLE Emulator, 313
12.2.1. The Display Command, 318
12.2.2. The Load Command, 324
12.2.3. The Run Module, 326
12.2.4. The Peek/Poke Command, 332

Contents ix

12.2.5. Reading a SIMPLE Program from a File, 334
12.2.6. Making it User-Friendly, 339

13. TERMPROGRAMS 349

The suggestions for term programs in this chapter let you experience the deep
sense of creativity that programming affords, as well as sharpening your pro-
gramming skills.

13.1. SIMPLE Assembler Program, SAP, 349
13.2. Four-Dollar Calculator, FDC, 354

13.3. Double-Precision Integer Arithmetic, 359
13.4. Clock, 362

13.5. Tadpole, 368

13.6. Term Program Documentation, 374

APPENDICES
A — The ASCIHI Code, 377
B — PDP-11 Instructions, 379
C — Selected Programmed Requests and System Calls, 403
D — Selected MACRO-11 Assembler Directives, 423
E — MACRO-11 Error Codes and their Meanings, 433
F — Dynamic Debugging: ODT and ADB, 437
G — SIMPLE Emulator, 449

GLOSSARY, 463

INDEX, 471

1.1. FUNDAMENTAL COMPUTER CONCEPTS

We begin our study of computer organization and assembly language programming
by introducing basic machine and assembly language concepts. We do this with a
simulated decimal computer that, for want of a better name, we call SIMPLE. SIM-
PLE allows us to avoid the complexities of present-day computers, provides a
friendly environment in which to work, and enables us to introduce many fundamen-
tal hardware and software concepts much earlier than would otherwise be possible.
In this chapter we introduce and define these terms:

accumulator effective address mnemonic code
address indexing program counter
assembly language input/output register

memory cell loop self modifying code
central processing unit machine language stored program concept
conditional branching memory word

Before describing SIMPLE, we introduce some general concepts about com-
puter organization at the machine language level with examples from everyday life.
All computers have four fundamental components:

2 Assembly Language Programming and Machine Organization: PDP-11

Central Processing Unit (CPU)
Memory

Input Device

Output Device

gOooo

These components can even be identified in an inexpensive hand calculator
with memory: The calculator’s display is the output device; the keys are the input
device; the memory is accessed with the STOR, M+, M-, keys; and the CPU is the
device that performs the arithmetic computations. However, such a calculator is not a
computer if it is not programmable; it can perform only the arithmetic and mathemati-
cal functions listed on its keyboard.

On the other hand, a computer is a very general purpose symbol manipulator
with the capability of solving any problem whose solution can be expressed in terms
of elementary operations and conditional branching (within the limitations of its
memory and its speed). Therefore, the concept of a program—a list of instructions
that direct its operation—is fundamental to the concept of a computer. A more accu-
rate model of the computer concept is shown in Figure 1.1. Here we have a person
seated at a desk solving problems using manuals and a calculator. An unlimited sup-
ply of scratch paper is available and the pencil has an eraser that never wears out.
The person and the calculator form the CPU of this computer; the paper and manuals,
the memory; and the in and out boxes, the input and output devices, respectively.
Note that our model gives no credit to the human memory.

This model also illustrates that the central processing unit, or CPU, may be
separated into two subcomponents: the control unit and the arithmetic unit. The
control unit is the person; he or she reads instructions from the input box, consults
manuals, performs calculations using the calculator, and makes decisions regarding
what to do next. In other words, the person directs the flow of the calculations based
on the program. The program, or list of instructions, was provided to the control unit
through the input box, and parts of it may also be in manuals.

The arithmetic unit is the four function calculator. It is sometimes called an
arithmetic logic unit, or ALU. In this unit data is transformed by various, but trivial,
operations. The CPU is capable of only the simplest operations: performing the four
arithmetic operations, performing the logical operations of and, or, and not; shifting
numbers left or right; making simple comparisons—things that most grade-school

pupils can do without hesitation.! The arithmetic unit cannot, as a single operation,

! Some ALUs can only add and subtract.

Computer Organization via SIMPLE 3

Figure 1.1
A realization of a computer having both organic and electronic components

