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Preface

In this 'book it has been the aim of the authors to give a connected
and simple account of the most essential parts of dimension theory.
Only those topics were chosen which are of interest to the general
" worker in mathematios as well as the specialist in topology.

. Bince the appearance of Karl Menger's well-known “Dimensions-
theorie” in 1928, there have occurred important advances in the theory,
both in content and method. These advances justify a new treatment,
“and in the present book great empbasm has been laid on the modem
techniques of function spaces and mappings in spheres.
The algebraically minded reader will find in Chapter VIII a concise
exposition of modern homology theory, with applications to dimension.
Historical referenices are made solely for the guidance of the begin-
nmg student, and no attempt haa been made’ to attain completeness
in this respect. ‘
The suthors wish to express their thanks to Drs. Samuel Enlenberg
and William Flexner, who gave stimulating advice in preparing the
manuacript, and to Mr. James Dugundji, who carefully read the proof

and made valuable suggestions.
WiroLp HurEwicz

v HENRY WALLMAN
Chapel Hill, North Carolina
Madison, Wisconsin
Oclober 1941
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CHAPTER 1

Introduction

1. The modern concept of dimension

“Of all the theorems of analysis situs, the most important is that
which we express by saying that space has three dimensions. It is
this proposition that we are about to consider, and we shall put the
-question in these terms: when we say that space has three dimensions,
what do we mean?. ..

... if to divide a continuum it suffices to consider as cuts a certain
number of elements all distinguishable from one another, we say that
this continyum is of one dimension; if, on the contrary, to divide a
continuum it is necessary to consider as cuts a system of elements

themselves forming one or several continua, we shall say that this

continuum is of several dimensions.
“If to divide & continuum C, cuts which form one or several continua

of one dimension suffice, we shall say that C is a continuum of fwo
. dimensions; i cuts which form one or several continua of at most two
dimensions suffice, we shall say that C is a continuum of three dimen-
sions; and so on,

“To justify this definition it is necessary to see whether it is in this
way that geometers introduce the notion of three dimensions at the
beginning of their works. Now, what do we see? Usually they begin
by defining surfaces as the boundaries of solids or pieces of space, lines
as the boundaries of surfaces, points as the boundaries of lines, and
they state that the same proeedure can not be carried further.

“This,is just the idea given above: to divide space, cuts that are
called surfaces are necessary; to divide surfaces, cuts that are called
lines are necessary; to divide lines, cuts that are called points are
necessary; we can go no further and a point can not be divided, a point
not being a continuum. Then lines, which can be divided by cuts
which are not continua, will be continua of one dimension; surfaces,
which can be divided by continuous cuts of one dimension, will be
continua of two dimensions; and finally space, which can be divided
‘by continuous cuts of two dimensions, will be a continuum of three
dimensions. ” ‘

These words were written by Poincaré in 1912, in the last year of his
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4 INTRODUCTION [Ca. I

life. Writing in a philosophical journal,* Poincaré was concerned only
with putting forth an intuitive concept of dimension and not an exact
mathematical formulation. Poincaré had, however, penetrated very
deep, in stressing the inductive nature of the geometric meaning of
dimension and the possibility of disconnecting a space by subsets of
lower dimension. One year later Brouwert constructed on Poincaré’s
foundation a precise and topologically invariant definition of dimen-
sion, which for a very wide class of spaces (locally-connected separable
metric) is equivalent to the one we use today. -

Brouwer’s paper remained almost unnoticed for several years. " Then
in 1922, independently of Brouwer, and of each other, Menger and
Urysohn recreated Brouwer’s concept, with important improvements;
and what is more noteworthy, they justified the new concept by mak-
ing it the cornerstone of an extremely beautiful and fruitful theory
which brought unity and order to a large domain of geometry.

The definition of dimension we shall adopt in this book (see page 24)
is due to Menger and Urysohn. In the formulation of Menger, it
reads: '

a) the empty set has dimension — 1,

b) the dimension of a space is the least integer » for which every
point has arbitrarily small neighborhoods whose boundaries have di-
mension less than n.

It is the opinion of the authors that none of the several other possible
definitions of dimension has the immediate intuitive appeal of this one
and none leads so elegantly to the existing theory.

2. Previous concepts of dimension

Before the advent of set theory mathematicians used dimension in
only a vague sense. A configuration was said to be n-dimensional if
the least number of real parameters needed to describe its points, in
some unspecified way, was n. The dangers and inconsistencies in this
approach were brought into clear view by two celebrated discoveries of
the last part of the 19th century: Cantor’s 1:1 correspondence between
the points of a line and the points of a plane, and Peano’s continuous
mapping of an interval on the whole of a square. The first exploded -
the feeling that a plane is richer in points than a line, and showed that
dimension can be changed by a 1:1 transformation. The second con-
tradicted the belief that the dimension of a space could be defined as

* Revue de métaphysique et de morale, p. 486.
-t Uber den natilrlichen Dimensionsbegriff, Journ. f. Math. 142 (1918), pp. 146~

182.



§3) DIMENSION OF EUCLIDEAN SPACES 5

the least number of continuous real parameters required to describe
the space, and showed that dimension can be raised by a one-valued
continuous transformation.

An extremely important question was left open (and not answered
until 1911, by Brouwer): Is it possible to establish a correspondence
between Euclidean n-space (the ordinary space of n real variables) and
Euclidean m-space combining the features of both Cantor’s and Peano’s
constructions, i.e. a correspondence which is both 1:1 and continuous?
The question is crucial since the existence of a transformation of the
stated type between Euclidean n-space and Euclidean m-space would
signify that dimension (in the natural sense that Euclidean n-space has
dimension n) has no topological meaning whatsoever! The class of
topological transformations would in consequence be much too wide to
be of any real geometric use.

3. Topological invariance of the dimension of Euclidean spaces

The first proof that Euclidean n-space and Euclidean m-space are not
homeomorphic unless n equals m was given by Brouwer in his famous
paper: Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70
(1911), pp. 161-165. However, this proof did not explicitly reveal any
simple topological property of Euclidean n-space distinguishing it from
Euclidean m-space and responsible for the non-existence of a homeo-
morphism between the two. More penetrating, therefore, was
 Brouwer’s procedure in 1913* when he introduced his “Dimensions-

grad,” an integer-valued function of a space which was topologically
invariant by its very definition. Brouwer showed that the “Dimen-
sionsgrad” of Euclidean n-space is precisely n (and therefore deserved
its name).

Meanwhile Lebesgue had approached in anether way the proof that
the dimension of a Euclidean space is topologically invariant. He had
observedt that a square can be covered by arbitrarily small “bricks”
in such a way that no point of the square is contained in more than
three of these bricks; but that if the bricks are sufficiently small, at
least three have a point in common. In a similar way a cube in
Euclidean n-space can be decomposed into arbitrarily small bricks so
that not more than n - 1 of these bricks meet. Lebesgue conjectured
that this number n + 1 could not be reduced further, i.e. for any de-
composition in sufficiently small bricks there must be a point common

* Uber den natiirlichen Dimensionsbegriff, loc. cit.
t “Sur la non applicabilité de deux domaines appartenant & des espaces de n
et » + p dimensions,” Math. Ann. 70 (1911), pp. 166-168.
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to at least n + 1 of the bricks. (The first proof of this theorem was
given by Brouwer.*) Lebesgue’s theorem also displays a topological
property of Euclidean n-space distinguishing it from Euclidean m-space
and therefore it also implies the topological invariance of the dimension

of Euclidean spaces.
4. Dimension of general sets

The new concept of dimension, as we have already seen, gave a
precise meaning to the statement that Euclidean n-space has dirnension
n, and thereby clarified considerably the entire structure of topology.
Another feature which made the new dimension concept a milestone in*
geometry was the generality of the objects to which it could be applied.
The lack of a precise definition of dimension, however unsatisfactory
from an esthetic and methodological point of view, caused no resl
difficulty so long as geometry was confined to the study of relatively
simple figures, such as polyhedra and manifolds. No doubt could
arigse, in each particular case, as to what dimension to assign to each of
these figures. This situation changed radically, following the dis-
coveries of Cantor, with the development of point-set theory. This -
new branch of mathematics tremendously enlarged the domain of what
could be considered as “geometrical objects” and revealed configura-
tions of complexity never before dreamt of. To associate with each of
these objects & number which might reasonably be called a dimension
was by no means a trivial task. What, for instance, was one to take
as the dimension of the indecomposable continuum of Brouwer, or of
Sierpifiski’s “curve” each of whose points is a ramification point?

Dimension-theory gives a complete answer to these questions. It
assigns to every set of points in a Euclidean space (and even to every
subset of Hilbert spacet), no matter how “pathological,” an integer
which on intuitive and formal grounds strongly deserves to be called
its dimension.

5. Different approaches to dimension

Before we proceed to a systematic study of dimension-theory let us
pause to consider other possible ways of defining dimension.

We have already mentioned Lebesgue’s method of proving the in-
variance theorem for the dimension of Euclidean spaces. His proce-
dure can be used very well to establish a general concept of dimension:
the Lebesgue dimension of a space is the least integer n with the

* Uber den nattrlichen Dimensionsbegriff, loe. cit.
t See Appendix for remarks concerning more general apaces.
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property that the space may be decemposed into arbitrarily small
domains not more than n + 1 of which meet. [t turns out (see Chap-
ter V) that this method of introducing dimension coincides with that
due to Brouwer, Menger, and Urysohn. We shall now give other
examples showing how topological investigations of very different
nature all lead to the same concept of dimension.

A)* Let
1 . ' fs'(xlr"'yzn)l t=1---,m

“‘he m continuous real valued functions of n real unknowns, or what is
the same, m continuous real-valued functions of a point in Euclidean
n-space. It is one of the basic facts of analysis that the system of m
equations in n unknowns,

(2) . f:'(zl; Tty 2..) = 0:

has, in general, no solution if m > n. The words “in general” may be
made precise as follows: by modifying the functions f; very little one
can obtain new continuous functions g; such that the new system

(3) gi(zy, - - -, z,) =0

has no solution. On the other hand, there do exist sets of n equations
in » unknowns which are solvable, and which remain solvable after any
sufficiently small modification of their left members. This property of
Euclidean n-space can be made the basis of & general concept of dimen-
sion. A space X would be called n-dimensional if n is the largest
integer for which there exist n continuous real-valued functions (1) de-
fined over X such that the system of equations (2) has a solution which
is essential in the sense explained above. It turns out that this “di-
mension” is again the same as the dimension of Brouwer, Menger, and
Urysohn (see Chapter VI).

~ B) Amodification of A) is this problem. Consider continuous trans-

formations of a space in an n-sphere. Every point of the n-sphere may
be regarded as a vector of length unity (a “direction”) in Euclidean
(n + 1)-space, so that instead of continuous transformations in the
n-sphere, one may speak of continuous fields of non-vanishing (n 4 1)-
vectors. Suppose C is a closed set in a space X. Given a continuous
field of non-vanishing (n -4 1)-vectors on C, is it possible to extend this
field, without changing the vectors on C, to a continuous field of non-

* The questions discussed in A), B), and C) are closely related to each other,

and were raised by Alexandroff in a paper whose results underlie much of Chapters
VI and VIII: Dimensienstheorie, Math. Ann. 106 (1932), pp. 161-238.
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vanishing (n -4 1)-vectors defined over all of X? It turns out that the
dimension of X is the least integer n for which such an extension is
possible for each closed set C and each continuous field of non-vanishing
(n + 1)-vectors on C; in terms of mappings in the n-sphere, the least
integer n with the property that any continuous mapping of any closed
subset C into the m-sphere can be extended to all of X (see Chap-
ter VI).

C} Another approach to dimension arises from homology theory.
Consider 1-cycles (roughly, continuous closed curves) in a 2-dimensional
manifold. Some of these bound a 2-dimensional part of the manifold,
or in the notation of homology theory, are bounding cycles. On the
other hand no 2-cycle (with the obvious exception of the vacuous
2-cycle all of whose coefficients are zero) can bound in the 2-manifold,
because there is nothing 3-dimensional for it to bound. In a simi-
lar way an n-dimensional manifold contains non-vacuous bounding
m-cycles for every m less than n, but contains only vacuous bounding
. n-cycles. Now, homology theory can be applied to arbitrary compact
- metric spaces. One may then define the “homology-dimension” of a
compact metric space as the largest integer n for which there exist,
with suitably chosen coefficients, non-vacuous bounding (n — 1)-cycles.
The homology-dimension so defined turns out to be the same as our
standard dimension (see Chapter VIII).

D) The intuitive perception of dimension associates with the word
1-dimensional, objéBts having length (or linear measure), with the word
2-dimensional, objects having area (or 2-dimensional measure), with
the word 3-dimensional, objects having volume (or 3-dimensional
measure), and so on. An attempt to make this intuitive feeling pre-
cise meets the obstacle that dimension is a topological concept while
measure is a metrical concept. However, let us consider with a given
metric space X all the metrics compatible with its topological structure.
We find (see Chapter VII) that the dimension of X can be characterized
as the largest real number p for which X, in each metrization, has posi-
tive p-dimensional Hausdorff measure.

6. Remarks

In this book we assume only a very elementary knowledge of point-
set topology, such as is contained, for example, in the first chapters of
Alexandroff-Hopf’s Topologie, Julius Springer, Berlin, 1935; Kura-
towski’s Topologie I, Monografje Matematyczne, Warsaw, 1933;
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Menger's Dimensionstheorie, B. G. Teubner, Leipzig, 1928. It will,
however, be possible for the reader to refresh his acquaintance with the
fundamentals of topology by the use of the index. The index contains,
besides references to the definitions and results of dimension-theory, a
considerable number of very brief discussions (and even some proofs)
of topics in general topology which the development requires.

A large number of illustrative examples are included in the book,
many of them without proof; these should be regarded as exercises.

Mathematical assertions of subsidiary importance are called Propo-
sitions. References to these are made according to the following
scheme:

“By Proposition. A)” means by Proposition A) of the same section
and chapter in which the reference occurs.

“By Proposition 2 A)” means by Proposition A) of Section 2 of the
same chapter in which the reference occurs.

“By Proposition 111 2 A)” means by Proposition A) of Section 2 of
Chapter II1.

Throughout this book all spaces are separable metric, unless the con-
trary is explicitly stated. This limitation is made because there arise
grave difficulties in extending dimension-theory to more general spaces.
A brief discussion of some of these difficulties is given in the Appendix.



CHAPTER II

Dimension 0

Topology consists essentially in the study of the connectivity struec-
ture of spaces. The concept of a connected space, which in its present *
form is due to Hausdorff and Lennes, may be considered the root-
concept from which is derived, directly or indirectly, the bulk of the
important concepts of topology (homology or “algebraic connecthty
theory, loeal connectedness, dimension, ete.).

A space is connected if it cannot be split into two non-empty disjoint
open sets. Equivalently: a space is connected if, except for the empty
set and the whole space, there are no sets whose boundaries* are empty.

In this chapter we are concerned with spaces which are disconnected
in an exceedingly strong sense, viz. have so many open sets whose
boundaries are empty that every point may be enclosed in arbitrarily

small sets of this type.

1. Definition of dimension 0 _
Definition II 1. A space X has dimension 0 at @ point p if p has
arbitrarily small neighborhoodst with empty boundaries, i.e. if for each
neighborhood U of p there exists a neighborhood V of p such that
VeU,
bdry V =
A non-empty space X has dimension 0, dim X = 0, if X has dimen-
sion 0 at each of its points.

A) It is obvious that the property of being 0-dimensional, or of
being 0-dimensional at a point p, is a topological invariant.

B) A O-dimensional space can also be defined as a non-empty space
in which there is a basis* for the open sets made up of sets which are
at the same time open and closed.

Exampre II 1. Every non-empty finite or countable space X is

* 8ee index. Observe that any set whose boundary is empty is both open

and closed, and conversely.
t By a neighborhood of a point we mean any open set containing the point.

10
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O-dimensional.* For given any neighborhood U of any point p let p

be a positive real number such that the spherical neighborhood of

radius p about p (the set of all points whose distance from p is less
than p) is contained in U, Let z1, 2s, - - - be an enumeration of X and

d (z.-, p) the distance from 2; to p. There exists a positive real number

¢’ which is less than p and different from all the d(z;, p). The spherical

neighborhood of radius p’ about p is then contained in U and its
boundary is empty. Hence X is 0-dimensional.

In particular the set R of rational real numbers is 0-dimensional.

Examrrz II 2. The set J of irrational resl numbers is 0-dimensional.
For given any neighborhood U of an irrational point p there exist rational
numbers p and v such that p < p < ¢ and the set V of irrational num-
bers between p and ¢ is contained in U. In the space J of irrationals
V is open, and has an empty boundary because every irrational point
which is a cluster-point { of V is between p and o and hence belongs to V.

ExampLE II 3. The Cantor discontinuumi (° (the set of all real
numbers expressible in the form ) ;a./3" where a, = 0 or 2) is
0-dimensional,

Exampre 11 4. Any set of real numbers contammg no interval is
0-dimensional.

ExaumpLe II 5. The set J; of points in the plane both of whose co-
ordinates are irrational is 0-dimensional. For any such point is con-
tained in arbitrarily small rectangles bounded by lines having rational
- intercepts with the coordinate axes and intersecting them at nght
angles, and the boundaries of such rectangles do not meet A
. Examprr II 6. The set R} of points in the plane exactly one of whose

coordinates is rational is O-dimensional. For any such point is con-
tained in arbitrarily smal] rectangles bounded by lines having rational
intercepts with the coordinate axes and intersecting them at 45°,
and the boundaries of such rectangles do not meet Rj.

, ExampLe I1 7. The set R, of points in Euclidean n-space§ E, all of
whose coordinates are rational is O-dimensional. For R, is countable.
Examrre II 8. The set J, of points in E, all of whose coordinates are

irrational is O-dimensional. ‘This is & simple generalization of Example

11 5.
REMARK. Suppose 0 < m £ n. Denote by R the set of points in

~* Do not forget that unless the contrary is explicitly atated all spaces consid-
ered in this book are separs,ble metric.

t See index.
$ See Hausdorff: Mengenlehre, de Gruyter, Berlin 2nd ed. 1927, p. 134.

§ See index.
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E, exactly m of whose coordinates are rational. In Examples II 7 and
II 8 we have seen that R? = R,and RS = J, are O-dimensional. It is
true (Example 1I 12) that R’ is 0-dimensional for each m and 7, but
the proof depends essentially on the “Sum Theorem for 0-dimensional
Sets,” Theorem II 2, and the simple proof of Example 11 6 cannot be
generalized.

ExampLE I1 9. The set R of points in the Hilbert* cube I, all of
whose coordinates are rational is 0-dimensional. (This set is not count-
able.)

Suppose
a = (al’a”.. )

is an arbitrary point in I, and U is a neighborhood of a in I.. By
taking n large enough and p;, ¢. sufficiently close to ay, p; < a: < ¢4,
i =1, -, n, one gets a neighborhood of a contained in U consisting
of the points

= (xlrxh o )

of I, whose first n coordinates are restricted by

(1) P < x; < Q;
(and whose other coordinates are restricted only by
(2) I :v;| =< 1 / 'i,

((2) being, of course, always present in 1,,).t
Now, suppose a ¢ R.. By taking p; and ¢; irrational we get a neigh-
borhood V of a each of whose boundary points in I, has at least one

* See index.

t We have to show that for each ¢ > 0 we can find an integer n and a positive
real number 5 such that if ¢ — p; < 5 for? S n then all z satisfying (1) and (2)
also satisfy

3 [i (z; - as)’]‘< e

[£0]

To do this choose » so that

and & so that
nd < et

If gi — ps is less than & for i S n, we have for all z satisfying (1) and (2) that
hed - " .
Lz —a) <nit 4+ T (_?-) < i 4 e = o
fml fn

which proves (3).



