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Introduction

1. The classical theorem of Mittag-Leffler was generalized to the case of several
complex variables by Cousin in 1895. In its one variable version this says that, if
one prescribes the principal parts of a meromorphic function on a domain in the
complex plane C, then there exists a meromorphic function defined on that
domain having exactly those principal parts. Cousin and subsequent authors
could only prove the analogous theorem in several variables for certain types of
domains (e.g. product domains where each factor is a domain in the complex
plane). In fact it turned out that this problem can not be solved on an arbitrary
domain in C™, m > 2. The best known example for this is a “notched” bicylinder in
- C2. This is obtained by removing the set {(zy, z,) € C?| |z,| > 4, |2,| < 4}, from
the unit bicylinder, A -={(z,, z,) € C*{|z,| < 1, |z,| < 1}. This domain D has
the property that every function holomorphic on D continues to a function holo-
morphic on the entire bicylinder. Such a phenomenon never occurs in the theory
of one complex variable. In fact, given a domain G < C, there exist functions
holomorphic on G which are singular at every boundary point of G. In several
complex variables one calls such domains (i.e. domains on which there exist
holomorphic functions which are singular at every boundary point) domains of
holomorphy. H. Cartan observed in 1934 that every domain in C2 where the above
“Cousin problem” is always solvable is necessarily a domain of holomorphy. A
proof of this was communicated by Behnke and Stein in 1937. Meanwhile it was
conjectured that Cousin’s theorem should hold on any domain of holomorphy.
This was in fact proved by Oka in 1937: For every prescription of principal parts
on a domain of holomorphy D = C™, there exists 2 meromorphic function on D
having exactly those principal parts. In the same year, via the example of C*\{0},
H. Cartan showed that it is possible for the Cousin theorem to be valid on
domains which are not domains of holomorphy.

As the theory of functions of several complex variables developed, it was often
the case that, in order to have a chance of carrying over important one variable
results, it was necessary to restrict to domains of holomorphy. This was parti-
cularly true with respect to the analog of the Weierstrass product theorem. For-
mulated as a question, it is as follows: Given a domain D in C™, can one prescribe
the zeros (counting multiplicity) of a holomorphic function on D? It was soon
realized that in some cases it is impossible to find even a continuous function
which does the job. Conditions for the existence of a continuous solution of this
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probiem, the so-called “second Cousin problem,” were discussed by K. Stein m
1941. In fact he gave a sufficient condition which could actually be qhecked in
particular examples. Nowadays this is statéd in terms of the vanishing of the
Chern class of the prescribed zero set. Stein, however, stated this in a dual gnd
more intuitively geometric way. His condition is as follows: The “intersection
number” of the zero surface (counting multiplicity) with any 2-cycle in D should
always be zero. .

It was similarly fecessary to restrict to domains of holomorphy in order to
~ prove the appropriate generalizations of the facts that, on a domain in C, every
meromorphic function is the ratio of (globally defined) analytic functions and, if
the domain is simply connected, holomorphic functions can be uniformly approx-
imated by polynomials (ie. the Runge approximation theorem). Poincaré first
posed the question about meromorphic functions of several variables being quo-
tients of globally defined relatively prime holomorphic functions. He in fact
answered this positively in certain interesting casos (e.g. for C™ itself).

2. It is not at all straightforward to generalize the notion of a Mittag-Leffler
distribution (i.e. prescriptions of principal parts) to the several variable case. The
main difficulty is that the set on which the desired function is to have poles is no
longer discrete. In fact, in the case of domains in C”, m>2, this set is a
(2m — 2)-dimensional real (possibly singular) surface. Thus one can no longer just
prescribe points and pieces of Laurent series. This can be circumvented as follows:
IfGisadomainin C™and ¥ = {U}}, i € I, is an open covering of G, then the family
{U,, hj} is called an additive Cousin distribution on G, whenever each h; is a mero-
morphic function on Uy, and on Uy, = U, n U, the difference h,, — h,, is holo-
morphic for all choices of igand i,. In the case of m = 1, this means that k, and h,,
have the same principal parts. Thus one obtains a Mittag-Leffler distribution from
the Cougin distribution. A meromorphic function A is said to have the Cousin
distribution for its principal parts if # — h; is holomorphic on U, for all i.

Different. Cousin distributions can, on the same covering, define the same
distribution of principal parts. This difficulty is overcome by introducing an
equivalence relation. For this let x € G..Let U be an open neighborhood of x in G
and suppose that k is meromorphic on U. Then the pair (U, h) s called a locally
meromorphic function at x. Two such pairs (U, h,) and (U3, h;) are called equiv-
alent if there exists a neighborhood ¥ of x with ¥ < U, U, and h, — h, holo-
morphic on V. Each equivalence class is called a germ of a principal part. The set of
all germs of principal parts at x is denoted by »#,. We define »# x-—'-}U X, and

xeX

denote by x: # — G the map which associates to every germ its base point x ¢ G.
U < G is open and h is meromorphic on U then, for every x € U, one has the
associated principal part of h at x, h.e #,. Consequently there exists & map
sx: U— o, x> b, such that n-s, = id. It i§ easy to check that sets of the form
si(U), where U is any open set in G and h is any meromorphic function on U, form
a basis for a topology on . Further, in this topology, n: # — G is seen to be
continuous and a local homeomorphism. In such a situation one calls # a sheaf _
over G. The fibers of x should be thought of as stalks with the open sef$ looking
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like transveseal surfaces given by the maps s,. The map s,: U — o is called a local
section over U. Every Cousin distribution {U;, h;} defines a global continuous map
(section) s: G — o with - s = id. This is locally defined by s | U; =S, The condi-

. tion sheat, for all i and j, h; — h; is holomorphic on U; n Uj is equivalent to the fact
that s is weli-defined. Two Cousin distributions have the same principal parts if
and only if they correspond to the same section in D over G. A meromorphic
function h is a “solution” of the Cousin distribution s (i.e. has exactly the same
principal parts as were prescribed) exactly when s, = s.

It is clear from the above that the sheaf theoretic language is the ideal medium
for the statement of the generalization of the Mittag-Leffler problem to the several
variable situation. Of course for domains in C" Oka had solved this without
explicit use of sheaves. But even in this case the language of sheaves isolated the
real problems and made the seemingly complicated techniques of Oka more
transparent. This was also true in the case of the second Cousin problem, the
Poincaré problem, etc. Furthermore this language was ideal for formulating new
problems and for paving the road toward possible obstructions to their solutions.
Theorems about sheaves themselves later gave rise to numerous interesting
applications.

3. The germs of holomorphic functions form a sheaf which is usually denoted
by 0. It has already been pointed out that the zero sets of analytic functions are
important even in the study of the Cousin problems. Thus it should be expected
that analytic sets, which are just sets of simultaneous zeros of finitely many holo-
morphic functions on domains in the various C™, would play an important role in
the early development of the theory. In fact the totality of germs of holomorphic
functions which vanish on a particular analytic set form a subsheaf of @ which
frequently comes into play in present day complex analysis. In 1950 Oka himself
used the idea of distributions of ideals in rings of local holomorphic functions
(idéaux de domaines indéterminés). This notion, which at the time of its concep-
tion seemed difficult and mysterious, just corresponds to the simple idea of a sheaf
of ideals. '

The use of germs and the idea of sheaves g0 back to the work of J. Leray.
Sheaves have been systematically applied in the theory of functions of several
complex variables ever since 1950/51. The idea of coherence is very important for
many-oonsiderations in several complex variables. Roughly speaking, a sheaf of
0O-modules is coherent if it is locally free except possibly on some small set where it
- is still finitely generated with the ring of relations again being finitely generated.
Even in the early going it was necessary to preve the coherence of many sheaves.
This was often quite difficult, because there were really no techniques around and
most work had to be done from scratch. The most important coherence theorems
originated with H. Cartan and K. Oka. After the foundations had. been laid,
coherent sheaves quickly enriched the theory of domains of holomorphy with new
important results. In the meantime, in his memorable work “Analytische Func-
tionen mehrerer komplexer Verinderlichen zu vorgegebenen Periodizititsmoduln
und das zweite Cousinsehe Problem,” Math. Ann. 123(1951), 201-222, K. Stein
had discovered complex manifolds which have basic (elementary) properties simi-
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lar to domains of holomorphy. A domain G — C is indeed a domain of holo-
morphy if and only if it is a-Stein manifold. The main point is that many theoren}s
about coherent sheaves on domains of holomorphy can as well be proved for Stein
manifolds. Cartan and Serre recognized that the language of sheaf cohomology,
which had been developed only shortly before, is particularly suitable for the
formulation of the main results: For every coherent sheaf & over a Stein manifold
X, the following two theorems hold: ’

Theorem A. The O(X)-module of global sections #(X) generates every stalk
¥, as an 0,-module for all x € X.

Theorem B. HY(X, #)=0forallg> 1.

These famous theorems, which were first proved in the Seminaire Cartan
1951/52, contain, among many others, the results pertaining to the Cousin
problems. ,

4. Following the original definition, a paracompact complex manifold is called
a Stein manifold if the following three axioms are satisfied

Separation Axiom: Given two distinct points x,, X, € X, there exists a function f
holomorphic on X such that f(x,) # f(x,).

Local Coordinates Axiom: If x, € X then there exists a'neighborhood U of x,
and functions f,, ..., f,, which are holomorphic on X such that the restrictions
z=f|U,i=1,..., m, give local coordinates on U.

Holomorphic Convexity Axiom: If {x} is a sequence which “goes to o in X (i.e.
the set {x;} is discrete) then there exists a function [ holomorphic on X which is
unbounded on {x}: sup| f(x,)] = co. ‘

It is clear that a domain in C™ is a Stein manifold if and only if it is holomor-
phically convex. However if one wants to study non-schlicht domains over C™ (ie.
ramified covers of domains in C*), then it is not apriori clear that two points lying
over the same base point can be separated by global holomorphic functions.
Likewise it is not obvious that neighborhoods of ramification points have local
coordinates which are restrictions of global holomorphic functions. If one allows
points which are not locally uniformizable (ie. points where there is a genuine
singularity and the “domain” is not even a manifold, as is the case at the point
0,0,0)e V={(x,y, z) e C*|x2 = yz}, which is spread over the (y, z)-plane by
projection) then the above definition is meaningless, because we assumed that X is
a manifold. However, even in the non-locally uniformizable situation above, the

following significant weakening of the separation and local coordinate axioms still
holds:
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Weak Separation Axiom: For every point x, € X there exist functions fi, ...,
1, € O(X) so that x, is an isolated point in{x € X | fy(x) =" =f(x)=0}.

Among other things, this allows the consideration of spaces with singularities.
Due to the maximum principle, this weak separation implies that every compact
analytic subspace of X is finite.

It turns out that, without losing the main results, the convexity axiom can also
be somewhat weakened:

Weak Convexity Axiom: Let K be a compact set in X and W an open neighbor-
hood of K in X. Then R ~ W is compact, where R denotes the holomorphic hull of K
inX:

Re=(xe X|| ()] <sup | f0)], forall feo(x),
ye

One way of strengthening the axiom immediately above is to require that K be
compact in X. If one does this and further considers only the case where X is a
manifold, then, without the use of deep techniques, one can show that the
strengthened axiom is equivalent to the holomorphic convexity axiom (see
Theorems IV.2.4 and 1V.2.12).

For the purposes of this book, a Stein space is a paracompact (not necessarily
reduced) complex space for which Theorem B is valid. It is proved that this condi-
tion is equivalent to the validity of Theorem A, and is also equivalent to the above
weakened axioms. In particular it follows that if X is a manifold, the weakened
axioms imply Stein’s original axioms.

We will always assume that a complex space has countable topology and is thus
paracompact. With a bit of work one can show that any irreducible complex space
which satisfies the weak separation axiom is eo ipso paracompact (see 16, 24).

5. We conclude our introductory remarks with a short description of the con-
tents of this book. We begin with two brief preliminary chapters (Chapters A and
B) where we assemble the important information from sheaf theory and - the
related cohomology theories. The idea of coherence is explained in these chapters.
A reader who is really interested in coherence proofs, can find such in our book,
“Coherent Analytic Sheaves,” which is presently in preparation. Complex spaces
are introduced as special C-algebraized spaces. Further we develop cohomology
from the point of view of alternating (Cech) cochains as well as via flabby resolu-
tions. Proofs which are easily accessible in the literature (e.g. [SCV], [TF], or
[TAG]) are in general not carried out.

In Chapter I a short direct proof of the coherence theorem for finite holomor-
phic maps is given. It is based primarily on the Weierstrass division theorem and
Hensel's lemma for convergent power series. -

The Dolbeault cohomology theory is presented in Chapter II. As a con-
sequence we obtain Theorem B for the structure sheaf ¢ over a compact euclidean
block (i.e. an m-fold product of rectangles), K, in C™. In other words, for qg=1,
HYK, ©) = 0. It should be noted that, although we want to introduce Dolbeault
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cohomology in any case, this result follows directly and with less difficulty via the
Cech cohomology. ’ :

Chapter III contains the proofs for Theorems A and B for coherent sheaves
over euclidean blocks K = C™ One of the key ingredients for the proofs is the fact
that, for every coherent sheaf &, the cohomology groups, HY(K, %), vanish for ail
q large enough. The deciding factor in proving Theorem A is the “Heftungs-
lemma” of Cartan. This is proved quite easily if while solving the Cousin problem,
one simultaneously estimates the attaching functions.

In Chapter IV Theorems A and B are proved for an arbitrary Stein space, X. A
summary of the proof is the following: First it is shown that X is exhausted by
analytic blocks. (An analytic block is a compact set jn X which can be mapped by
a finite, proper, holomorphic map into an euclidkan block in some C™.) The
coherence theorem for finite maps along with the results in Chapter I yield the

desired theorem free of charge. In order to obtain such theorems in the limit (i.e. .

for spaces exhausted by analytic blocks), an approximation technique, which is a
generalization of the usual Runge idea, is needed.

Applications and illustrations of the main theorems, as well as examples of
Stein manifolds, are given in Chapter V. The canonical Fréchet topology on the
space of global sections #(X) of a coherent analytic sheaf is described in Section
4. By means of the normalization theorem, which we do not prove in this book, we
give a simple proof for the fact that, for a reduced complex space X, the canonical
Fréchet topology on H°(X, 0) is the topology of compact convergence.

Chapter VI is devoted to proving that, for a coherent analytic sheaf & on a
compact complex space X, H{X, &), q > 0, are finite dimensional C-vector space
(Théoréme de finitude of Cartan and Serre). In this proof we work with the
Hilbert space of square-integrable holomorphic functions and make use of the
orthonormal basis which was introduced by S. Bergman. The classical Schwarz
lemma plays an important role, replacing the lemma of L. Schwartz on linear
compact maps between Fréchet spaces.

In Chapter VII we attempt to entertain the reader with a presentation of the
theory of compact Riemann surfaces which results from, among other considera-
tions, the finiteness theorem of Chapter V. The celebrated Riemann-Roch and
Serre duality theorems are proved. The flow of the proof is more or less like that in
Serre [35], except that, in the analytic case, a real argument for HY(X, .#) =0 is
needed. This is done in a simple way using an idea of R. Kiehl. The book closes
with a proof of the Grothendieck theorem on the splitting of vector bundles over
CP,.

The reader should be advised that, while the English version is not a word for
word translation of Theorie der Steinschen Réume, there are no significant
‘changes in the mathematics. There are a number of strategies for reading thij

book, depending on'the experience and viewpoint of the reader. Those who are -

not currently working the field might first browse through the chapter on applica-
tions (Chapter V). , , o '

It gives us great ploasure to be able to dedicate this book to Karl Stein, whe
initiated the theory, as weH as collgborated in its development. Variovs prelinin-

¥
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ary versions of ouf’texts were already in existence in the middle 60’s. We would

like to thank W. Barth for his help at that time. ‘
It is our pleasure to express sincere thanks to Professor Dr. Alan Huckleberry

from the University of Notre Dame South Bend, Indiana, for translating this’
“bobk into English.

Gittingen, Miinster/West{. H. Grauert R. Remmert
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Chapter A. Sheaf Theory

In this chapter we develop sheaf theory only as far as is necessary for later function
theoretic applications.

We mention {SCV], [TF], [TAG]), and [FAC] as well as [CAS] as standard
literature related to the material in this chapter.

The symbols X, Y will always denote topological spaces and U, V are open sets.
It is frequently the case that V < U. Sheaves are denoted by &, #,, 7, ... and for
the most part we use S, S,, T, ... for presheaves.

§ 0. Sheaves and Presheaves

1. Sheaves and Sheaf Mappings. A triple (¥, n, X), consisting of topological
spaces & and X and a local homeomorphism n: & — X from & onto X is called a
sheaf on X. Instead of (&, =, X) we often write (£, n), & or just &. It follows
that the projection m is open and every stalk &, =n"'(x), x € X, is a discrete
subset of &.

If (¢4, my) and (&, n,) are sheaves over X and ¢: ¥, — &, is a continuous
map, then ¢ is said to be a sheaf mapping if it respects the stalks (ie.if y - ¢ = n,).
Since ¢(¥4,) = &, every mapping of sheaves ¢: &, - &, induces the stalk
mappings @,: &, ¥,,, x € X. Since n, and =, are local homeomorphisms, it
follows that a sheaf map ¢: &, - &, is always a local homeomorphism and is in
particular an open map.

Let (&3, n;) be another sheaf over X and suppose that y: ¥, » %, and
9: & —%, are sheal mappings. Then ¢ o ¢: ¥, - &, is likewise a sheaf
mapping. Since id: & — & is a sheaf mapping, this shows that the set of sheaves
over X, with sheaf maps as morphisms, is a category.

2. Sums of Sheaves, Subsheaves, and Restrictions. Let (¥, 7,) and (¥,, ,) be
sheaves over X. We equip

1@ ={p, p2) e &, x &y ny(py) = ma(p,)} = U (L12 X F22)
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2 Chapter A. Sheaf Theory

with the relative topology in &; x &,. Definingn: &, & &, - X by =(py, p,)*=
n,(p,), it follows that (¥, @ &, n) is a sheaf over X. It is called the direct or
Whitney sum of &, and &,. : v

A subset &’ of a sheaf &, equipped with the relative topology is called a
subsheaf of S whenever (¥, n| %) is a sheaf over X. Thus & is a subsheaf of & if
and only if it is an open subset of ¥ and n| %" is surjective.

Again let & be a sheaf over X and take Y to be a topological subspace of X.
Then, with the relative topology on &|Y:=n"'(Y)< &, the triple (#]Y,
n|(#|Y), Y)is a sheaf over Y. It is called the restriction of & to Y and is denoted
by #|Y or &y.

3. Sections. Let & be a sheaf on X and Y c X be a subspace. A continuous
map s: Y » & is called a section over Y if o s = idy. For x € Y, we denote the
“value” of s at x by s, (in the literature the symbol s(x) is also used for this
purpose). Certainly s, € &, for all x € Y. The set of all sections over Y in the sheaf
& is denoted by I'(Y, &). Quite often we use the shorter symbol &( Y). A section,
s € ¥(U), over an open set U = X is a local homeomorphism. The collection
{s(U)= ) s,|U = X open, s € #(U)} forms a basis for the topology of &.

xelU .
If@: &, > &, i a sheaf mapping theén, for every s €Z1(Y), @ o s € Fo(Y).
Hence ¢ induces a mapping @y: &4(Y) - &,(Y), s+~ o 5. On the other hand,
one can easily show the following:

Amap ¢: &1 - &, is a sheaf map if, for every p € &y, there exists an open set
U < X and a section s € &,(U) with p € s(U) so that the map ¢ o s: U, isa
section in £ (i.e. ¢ o s € ,(U)).

4. Presheaves and the Section Fmitor I. Suppose that for every open set U in
X there is associated some set S(U). Further suppose that for every pair of open
sets U, V<X with &+ VU we have a restriction map rl: S(U)— s(v)

sptiafying

rg=id and rl -1l =+rY,

/

whenever W < ¥ < U. Then S:={S(U), ¥} is called a presheaf over X. We note
that a presheaf on X is just a contravariant functor from the category of open
subsets of X to the category of sets. o

A map of presheaves ®: S, — S,, where S, = {SdU), 3} i=1,2,isaset of maps
o= {t"}’ ¢y:S,(U) - §,(U), such that, for all pairs of open sets U, V with V < U,
by iy = Sy o dy. Thus the presheaves on X form a category.

For every sheal & over X we have the canonical presheaf T(&) = {#(U ), %},
where r(s) = s| V. Every sheaf map ¢: &, » &, determines a map of presheaves
I'e): T(#,) - I(,) where T(p) = {py}. The following is immediate:

I' is a covariant functor from the category of sheaves into the category of
presheaves.



