


Generadl

Stochastic Processes
in the

Theory of Queues

by VACLAV E. BENES
Bell Telephone Laboratories

A
\A4 |
ADDISON-WESLEY PUBLISHING COMPANY, INC.
READING, MASSACHUSETTS « PALO ALTO - LONDON



Copyright © 1963
ADDISON-WESLEY PUBLISHING COMPANY, INC.

Printed in the United States of America
ALL RIGHTS RESERVED. THIS BOOK, OR PARTS THERE-
OF, MAY NOT BE REPRODUCED IN ANY FORM WITH-

OUT WRITTEN PERMISSION OF THE PUBLISHERS.

Library of Congress Catalog Card No. 88-7763



Author’s Preface

One of the welcome features of applied mathematics is that it
is in a position to appeal to at least two audiences, the mathe-
maticians and the engineers. But when an author tries to present
in one work simultaneously & general - rigorous mathematical
theory for a given applied topic, and an account of it that will
be understandable and useful to practical engineers, he must risk
losing both his intended audiences. A mathematician may boggle
at the “physical” and “practical” emphases, while an engineer
may be left quite bewildered by the theoretical niceties. Never-
theless, if it is accomplished, a simultanecus presentation to both
audiences is unquestionably a valuable and challenging task. In
this monograph I attempt such a task for the topic of delays in
queueing systems with one server.

Delays in queues with one server and order of arrival service
are considered without any restrictions on the statistical character
of the offered traffic. Elementary methods establish formulas and
equations describing probabilities of delay. These methods de-
emphasize special statistical models and yield a general theory.
In spite of the generality of this approach, intuitive proofs and
extensive explanations of the physical significance of formulas are
given, as well as rigorous derivations. The theory is applied to
specific models to obtain illustrative new results. Under mild
conditions of stationarity, the asymptotic behavior in time of the
delay is studied and is shown to be governed by a functional
equation closely analogous to the “fundamental equation” of
branching processes, already used in special queueing models. A
generalization of the Pollaczek-Khinchin formula is derived for
the case in which delays do not build up.

So many monographs, surveys, and books on the theory of
queues are currently appearing that 1 have made no effort to
canvass the vast extant literature of queueing. References to it
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have been included only insofar as they arose naturally in the text.
For the benefit of the reader, therefore, I cite the following books:

J. Riordan, Stochastic Service Systems. New York: John Wiley
and Sons, 1962.

D. R. Cox and W. L. Smith, Queues. New York: John Wiley
and Sons, 1961.

T. L. Saaty, Elements of Queueing Theory. New York: McGraw-
Hill Book Co., 1961.

L. Takdes, Introduction fo the Theory of Queues. New York:
Oxford University Press, 1962.

I would like to express my gratitude to Bell Telephone Labora-
tories for providing a milieu in which advanced theoretical work
on practical topics can be pursued, and for supplying all the
secretarial work involved in completion of the manuscript. Also,
it is a pleasure to acknowledge that a careful reading of the
manuscript by my colleague E. Wolman resulted in many correc-
tions and improvements.

Murray Hill, New Jersey V. E. B.
November 5, 1962.
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CHAPTER 1

VIRTUAL DELAY

1. INTRODUCTION

Congestion theory is the study of mathematical models of serv-

ice systems, such as telephone central offices, waiting lines, and
trunk groups. It has two practical uses: first, to provide engineers
with specific mathematical results, curves, and tables, on the basis
of which they can design actual systems; and second, to establish
2 general framework of concepts into which new problems can be
fitted, and in which current problems can be solved. Correspond-
ing to these two uses, there are two kinds of results: specific results
pertaining to special models, and general theorems, valid for many
models.
. Most of the present literature of congestion theory consists
of specific results resting on particular statistical assumptions
about the traffic in the service system under study. Indeed, few
results in congestion theory are known which do not depend on
special statistical assumptions, such as negative exponential dis-
tributions, or independent random variables. In this monograph
we describe some mathematical results which are free of such re-
strictions, and so constitute general theorems. These results con-
cern general stochastic processes in the theory of queues with one
server and order-of-arrival service.

In this work we have three aims: (1) to describe a new general
approach to certain queueing problems; (2) to show that this ap-
proach, although quite general, can nevertheless be presented in
a relatively elementary way, which makes it widely available;
and (3) to illustrate how the new approach yields specific results,

1



2 VIRTUAL DELAY

both new and known. What follows is written only partly as a
contribution to the mathematical analysis of congestion. It is
also, at least initially, a frankly tutorial account aimed at in-
creasing the public understanding of congestion by first steering
attention away from special statistical models, and obtaining a
general theory. Such a point of view, it is hoped, will yield new
methods in problems other than congestion.

When a general theory can be given, it will be useful in several
ways. It will (i) increase our understanding of complex systems;
(ii) yield new specific results, curves, tables, etc; and (iii) extend
theory to cover interesting cases which are known to be inade-
quately described by existing results. At first acquaintance, the
theorems of such a general theory may not resemble “results” at
all; that is, they may not seem to be facts which one could ob-
viously and easily use to solve a real problem. A general theory is
really a tool or principle, expressing the essence or structure of a
system; properly explained and used, this tool will yield formulas
and other specifics with which problems can be treated.

2. THE SYSTEM TO BE STUDIED

There is & queue in front of a single server, and the waiting
customers are served in order of arrival, with no defections from
the queue. We are interested in the waiting-time of customers.

As a mathematical idealization of the delays to be suffered in
the system, we use the virtual waiting-time W(t), which can be
defined as the time a customer would have to wait for service if
he arrived at time t. W(-) is continuous from the left; at epochs of
arrival of customers, W(-) jumps upward discontinuously by an
amount equal to the service-time of the arriving customer; other-
wise W(-) has slope —1 while it is positive. If it reaches zero, it
stays equal to zero until the next jump.

It is usual to define the stochastic process W(:) in terms of the
arrival epoch t; and the service-time. S of the kth arriving cus-
tomer, for k = 1,2,.... However, the following procedure is a
little more elegant; we describe the service-times and the arrival
epochs simultaneously by a single function K(-), which is defined
for ¢ > 0, left-continuous, nondecreasing, and constant between
successive jumps. The locations of the jumps are. the epochs of
arrivals, and the magnitudes are the service-times. It is conven-
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Fia. 1. The load K(-) and the v1rtual delay W(-). At the epoch &
of arrival of the kth customer, W(-) jumps upward discontinuously by
an amount equal to Si, the service-time of the kth customer; otherwise,
W(-) has slope —1 if it is positive; if it reaches zer0 1t stays equal to
zero until the next jump of the load function K¢:).. "

ient to define K(-) to be con.inuous from the left, except at ¢ = 0,
where it is continuous from the right. The,functions W(-) and
K (-) are depicted simultaneously in Fig. 1.

If K(¢) is interpreted as the work offered to the server in the
interval [0, ), then W(f) ean be thought of as the amount of
work remaining to be done at time {. In terms of this interpreta-
tion, it can be seen that

Work remaining at ¢ = total work load offered up to ¢
— elapsed time
+ total time during which server
was idle in (0, t).

ek

Then formally, W(-) is defined in terms of K() By the integral
equation

W = K@ — i+ f: U{#W-(u)] du, t2 0 (1)

where U(#) is the unit step function, that is, U(z) = 1for z > 0,
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and U(z) = 0 otherwise.* For simplicity we have set W(0) =
K(0).

It is possible to give an explicit solution of Eq. (1) in terms of
K(-) and the supremum functional. This is the content of the
following result of E. Reich [1].1

Lemma 1.1. If K(z) — z has a zero in (0, ¢), then
W@ = sup (K@ — K@) — t + z}.

If K(z) — z > Oforz€ (0,¢), then W(t) = K(t) — ¢.

Proof. Let us set

2() = sup {(u:0 <u <t and W(u) = 0}.

Then
W) = K@ — Kls()) — t + =(2)

< sup {K() — K(z) — t + z}.
. 0<s<t
On the other hand, for 0 < z < t Eq. (1) gives
W@ = W) + KO — K@ + [ U-Wwldu — t+2
2 K@) — K@) — t+=.
Lemma 1.1 provides an explicit characterisation of the important

event {W(t) = 0} purely in terms of K(-) and the supremum
functional, as follows.

Lemma 1.2. W(t) = 0 if and only if

K@ <t )]
and

sup {K(t) — K(z) —t+42} <0 @3)
0<z<L¢ :

* Formulas are numbered sequentially in each chapter. Thus (1)
refers to the first formula of the current chapter, and (4.2) refers to
the second formula of Chapter 4, ete.

t Numbers in brackets are keyed to the references at the end of the
book.
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Proof. Suppose that W(t) = 0. Then Eq. (1) implies
i
K@) —t+ /o Ul—W ()] du = 0,
so that K(t) < t. Also, asin Lemma 1.1, for 0 < z < ¢,

WO = W) + KO — K@ + [ "Ul-W)du — t+ 2
> K@) — K@) —t+z.
Hence W(t) = 0 implies

sup {K(t) — K(x) —t+z} <0.
0<z<t

Conversely, assume the conditions (2) and (3) of Lemma 1.2.
Case 1. K(z) = z for some z € (0, ¢). Then by Lemma }.l,
W) = sup {K(t) — K(z) —t+2} <0.
o<z<t

Since W(-) is nonnegative, we have W(t) = 0.
Case 2. K(z) = zfornoz € (0,t). Then by Lemma 1.1,

W) =K@t —t<0.

We note that Lemma 1.2 takes into account the initial value
W(0) = K(0), as it should.

Lemma 1.1 may be interpreted physically in the following
manner. The quantity in braces {K(f) — K(z) — t + =} is, if
positive, the excess of arriving load in the interval [z, t) over the
elapsed time { — z; it is therefore the overload in [z, f). Reich's
formula then says, essentially, that

Delay at ¢ = sup {overload in [z, £)}.
0<z<¢

The relationship between the waiting-time W(-) and the
offered traffic K(-) can be further elucidated graphically by
reference to Fig. 2. The light solid line shows K(t) — ¢, the traffic
offered up to time £ minus the traffic that could have been served
if the server had been kept busy throughout the interval (0, ¢).
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W(f) =Traffic in hand to be served
=Waiting-time for arrival at {

Fic. 2. Relationship between waiting-time and offered traffic.

It is assumed, in Iig. 2, that the server starts busy at ¢ = 0. It
is busy until { = a. At this point the server becomes idle, and
K(f) = .t turns negative; its negative value is the negative of the
idle time. Att = b, more traffic is offered, and K(f) — tjumps up.

The heavy dashed line represents:the waiting-time at ¢, W(t);
W(t) can also be thought of as the traffic in hand and yet to be
served at time £. This line can never be negative. It is equal to
K(t) — t before a and is zero from a to b. At b it jumps up, re-
maining above and’ parallel to K(f) — ¢ until ¢ = d, when the
server becomes idle again. W (t) is above K(tf) — ¢ by exactly the
amount by which K(¢) — t was'most negative at b. At d, when
W(t) reaches zero, K(t) — t is just reaching its previous local
infimum, and K(d) — d = K(b) — b.

During the interval (d, €), W(.) remains at zero, and K(f) — ¢
becomes more negative, establishing new local‘infima as it goes,
and building up more idle time.” At ¢{ = ¢, K(¢) — ¢ and W(-)
both jump up. Again W(-) is parallel to K(f) — ¢, but isnow above
it by an amount equal to the negative of the last infimum,
K(e) — e. S

In Fig. 2,

inf [K(x) — z]
a<z<t
is shown as a light-dashed line. - It is & monotone, nonincreasing
function of ¢, and is the negative of the total idle timeup to time ¢.
To account for the period ¢ .< a, when K(f) — t has not yet be-
come negative, and the server has not yet been idle, we write

W) = K(t) = ¢t — min {0, inf [K(z) — zl},
0<z<t
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K(t) =Offered load

W{(t) =Real backlog
=waiting -time

:.\ \ The, H
\ , S K(t) —~t= Load-time
N \‘/\/(\. ( excessm

\ AN N =Virtual
N N,  backlog.

o NN

min ‘ 0,inf [K(z) 1] } N

0<z <t

N
= —(Accumulated idle time) N\

Fic. 3. Relationship among offered load, waiting-time, negative
of accumulated idle time, and “load-time excess.”

and thus obtain another representation for the delay;i.e., a solu-
tion of Eq. (1).

In a manner similar to that of Fig. 2, I'ig. 3 depicts, simulta-
neously, the offered load K (-) in a light solid line, the waiting-time
W(-) in a heavy solid line, the negative of the accumulated idle
time in a heavy dashed line, and the “load-time excess” K(¢) — ¢
in a light dashed line, when it does not coincide with the negative
of the idle time. The terminology in Fig. 3 has been purposely
chosen to suggest an interpretation in terms of inventory or
storage theory. W(t) is the real backlog (of orders, say), K({) is
the cumulative amount ordered, and K(f) — t might be termed the
load-time excess or the virtual backlog. Then

Real bé_,cklog = virtual backlog + accumulated idle time.

3. CHARACTER OF THE RESULTS TO BE PROVEN

Models of waiting lines usually contain explicit assumptions
about the statlstlcal nature of the offered load K(-). For instance,
the 51mp1est ‘models amount to assuming that the interarrival
times (t, — {,—1) are all independent, with the same negative
exponential distribution; a similar assumption is made for the
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service-times. These assumptions give a class of models para-
metrized by the means of the negative exponential distributions.

A broader class of models is specified by retaining the assump-
tions that the interarrival times be independent and identically
distributed (and similarly for service-times), but allowing any
distribution, not just the negative exponential. The interarrival
and service-time distributions may still be said to “parametrize”
this broader class of models, since their choice determines a model
in the class. In the papers of Khinchin [2], Kendall [3], Bailey
{4], Takécs (5), and Benes {6}, the arrivals form a Poisson process,
and the service-times are independent of each other and of the
arrival process. In the work of Smith [7] and Lindley (8], it is
assumed that the interarrival-times and the service-times are
(independent) renewal processes. The references just cited are
merely representative; we make no attempt to give an adequate
bibliography of the subject.

Indeed, the literature of applied probablhty theory contains
many investigations of waiting-times (for one server); however,
these studies have depended essentially on assurmptions of atatis-
tical independence or special distributions. Many useful and in-
teresting results bave been obtained under these assumptions,
which probably include most cases of practical interest. We be-
lieve, though, that the assumptions have tended to obscure the
stochastic process of interest (the waiting-time) with analytical
detail, since it is not always possible to separate the essential
features of the stochastic process from those which only reflect
the strength and analytic nature of the hypotheses.

As assumptions more general even than those of Lindley (8]
are congidered, it becomes extremely laborious to specify the model
first, and then compute interesting quantities, such as distribu-
tions of delay, probabilities of loss, ete. So instead of looking for
ways of exactly characterizing the model, we can try to search
directly for simple ways of expressing the quantities of interest
in terms of the model. Since the probability

Pr{W@® < w} )

is what we actually wish to compute from the model, the question
arises whether this calculation can be made without first specifying
the entire probabilistic structuré of K(-). The following intuitive
argument can be adduced for answering “yes.” W(-) is defined
in terms of the load K(-) by a very special relationship, expressed
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in the integral equation (1); hence, no matter what are the sta-
tistical features of K(-), it is likely that the distribution of W(:)
depends only on some very particular, physically interpretable,
statistical functions associated with K(-). It is not obvious that
such an economy can be made in the generality we desire.

A principal result {formulas (2.4) and (2.5) or (3.16) and (3.17)},
described in later sections, states that the probability (4) can, in
fact, be given a fairly simple expreemon which is generally valid for
any load process. This expression depends only on two specisl
functions obtainable from the statistical structure of the load
K(-). Each function has a definite intuitive or physical signifi-
cance, given later. These statistical functions achieve the de-
sired economy of description because we can state that the de-
gired probabilities depend only on the features.of K(-) expressed
in the functions, For the purposes of calculating (4), we do not
need the entire probablhstlc structure of K(-), but only & rela-
tively small relevant part. =~

From a theoretical viewpoint, the assumptions made in the
literature have been inadmissibly strong. For indeed, Eq. (1)
defines a transformation of a stochastic process K(-) of service-
times and arrival epochs into another stochastic process W(-) of
waiting-times. For each ¢, there is an operator or formula which
gives the distribution of W(¢) in terms of suitable fundamental
statistical functions associated with K(u) for u < t. The principal
problem 143 to find the form. of the operator and the characier of the
fundamental functions. The answer to this problem should depend
only on the integral equation (1) and on the fact that K(-) is a
nondecreasing step function. It should depend on no special fea-
tures of the probability measure for K(-) except those implied by
this last property.

Some inkling of the nature of this answer can be given briefly
here. The operator we seek is linear and operates only on the dis-
tribution of K(f) — ¢, and, for each u < ¢, on the conditional dis-

" tribution of K(t) — K(u) - ¢ + u relative to the knowledge that

K@) —u<0, and sup [K®) — K@) —u+y] <0
G<y<n

Accordingly, the present work involves (at first) no agsump-
tions of independence and no special distributions. We shall as-
sume at first that K(-) is a random, nondecreasing step function; its
only statistical peculiarity is that it is a nondecreasing step function.
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Another way of putting the problem we have attempted to
solve is as follows: For general load processes K(-), what is a small
amount of information about the statistical nature of K(-) with
which one can nevertheless compute Pr {W(t) < w} for all ¢
and w, and how is this calculation to be made? The required sta-
tistical functions are then the information about K(-); the formula
for the probability (4) indicates the method of calculation.

One approsch to the waltmg—t;mel_s,“used really in all the papers
cited previously, is to solve the Kolmogorov equations for the
distributions of a Markov process. Since our.assumptions do not
necessarily give rise to a Markov process, this approach is not
sufficiently general to solve our problem

Another possibility is to first solve Eq. (1) and then try to
express the distribution of the solution W(t) in terms of the prob-
ability measure for K(u), u < t. However, the solution of (1)
involves the supremum functional, and so, aithough it is adequate
in some cases, this approach incurs directly the notorious difficui-
ties associated with the distribution of a supremum.

Our approach is, in a sense, an inversion of the usual method
described above. The latter consists in first doing probability
theory to set up Kolmogorov or renewal equations, and then
doing analysis to solve the equatlons We can, however, achieve
greater generality by takmg maximum advantage of the fact that
the process W (-), of interest already, satisfies Eq. (1). In Chapter
2, we do this by a careful analysis of W(:) itself, by performing,
in effect, some of our analysis in the domain of random functions
and taking averages only at convenient points. In Chapter 3,
our procedure is as follows: We first obtain a representation of the
random variable exp {—sW(t)}, Re (s) > 0; the expectation of
this variate is the Laplace-Stieltjes transform of the distribution
of W(f). From this expectation, we derive a formula for
Pr{W() < w}byi mversmn and the formula expresses the func-
tional which we seek.

The present work is not a complete monograph on queues with
one server. Rather, it is an account of principal results deduced
by methods that are relatively new in queueing theory. Several
of these results have been included because they show that the
structure of the problems in the most general case is the same as
in the special cases considered to date by means of Markov
processes. Our effort to dispense with assumptions of independ-
ence and special distributions was originally stimulated by the



