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Preface

This book, like so many others produced by lecturers and teachers, has its foun-
dations in a lecture course. There were few books devoted, even in part, to
biomaterials when this course was written, so it was conceived, de novo, as
showing the increasing complexity of materials, starting from simple building
blocks. This is the biologist’s approach and probably that of the biochemist. The
physicist or engineer much prefers to treat the material as a conceptual ‘black
box’, describe what it does, then model it mathematically. This is probably
difficult for the biologist, who tends to think pictorially. So the first chapter
(which takes just this approach) is as much an appendix as an introduction. For
the rest of it, this book is not intended to be a review of facts, more an illustrated
discussion on ways of thinking about biomaterials. It is therefore somewhat
bitty and unbalanced, but with odd thoughts and asides which I hope will
stimulate.

My thanks are due to my colleagues Profs J. E. Gordon, W. D. Biggs and
J. D. Currey, and to Drs C. R. Chaplin, G. Jeronimidis, P. P. Purslow and J. E.
Smeathers. Sometimes it didn’t seem like help, but I’'m sure it was for my own
good.

Reading, 1981 JJEV.V.



Introduction

Bone and wood are familiar supportive materials and provide part of the frame-
work upon which the cells of many organisms are arrayed. Without some such
framework the cells would not be able to arrange themselves relative to each
other and so form tissues and organs, nor would those tissues and organs be able
to be organised into a whole organism. The importance of this framework is
obvious — without it multicellular life as we know it would be impossible. A
framework of such basic importance will obviously have many important attri-
butes since it will dictate or restrict the means by which the cells can communicate
and integrate their activities. These latter functions are not the concern of this
book — it is the mechanical aspect of the framework which is to be examined.
But in all that follows it is important that the mechanical properties and func-
tions should be considered in context. The roots of a plant serve several functions;
the mechanical anchorage of the plant is only one of these functions and cannot
be said to be either more or less important than any other function. Much the
same can be said of the extracellular material which glues cells together and of
the long bones of the body, to name but two examples.

For the modern biologist, familiar with the emphasis which molecular biology
places on the building blocks of protoplasm and its products, it is probably
easier to gain entry into, and understand the mechanical functioning of, the
extracellular framework if the properties of the units of the framework are
considered first, with the emphasis on the molecular aspects. This is the approach
taken in this book.



List of Symbols

Ao initial cross-sectional area

Ay area of shearing

b 1/r

¢, C, Mooney constants

c (as subscript) composite

d diameter

FE stiffness; the Young modulus

e strain (one-dimensional)

hif force; (as subscript) fibre

G;G shear modulus; giga- (10°)
G*,G',G" complex, storage and loss moduli
G(1) relaxation modulus

g acceleration due to gravity

H(7) relaxation spectrum function

h elastic loss factor

J;J compliance; joule

J() creep compliance

ki k kilo- (103); Boltzmann’s constant
L, initial length

di, ! change in length

mega- (10%)
molecular weight between cross-links

m metre, milli- (10~ 3), (as subscript) matrix, Maxwell; mass
newton
nano- (10~%)

resilience, the gas constant

end-to-end distance of a randomly orientated chain
entropy

temperature

time

internal energy

volume fraction

velocity

work of fracture
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(subscripts) three orthogonal axes
shear strain

small change, decrement
phase angle

viscosity

angle

extension ratio (=e + 1)
micro- (1079)

Poisson ratio

density

stress, strength

shear stress, relaxation time
frequency
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1 Basic Theory of Elasticity
and Viscoelasticity

In the physically stressful environment there are three major ways in which a
material can respond to external forces. It can add the load directly on to the
forces which hold the constituent atoms or molecules together. This occurs in
simple crystalline (including polymeric crystalline) and ceramic materials, and
such materials are typically very rigid. Or it can feed the energy into large changes
in shape (the main mechanism in rubber and other non-crystalline polymers).
And finally it can flow away from the force and deform either semi-permanently
(as with viscoelastic materials) or permanently (as with plastic materials).

1.1 Hookean materials and short-range forces

The first class of materials is exemplified amongst biological materials by bone
and shell (chapter 6), by the cellulose of plant cell walls (chapter 3), by the cell
walls of diatoms, by the crystalline parts of a silk thread (chapter 2), and by the
chitin of arthropod skeletons (chapter 5). All these materials have a well-ordered
and tightly bonded structure and fall into the same class of material as metals
and glasses. What happens when such materials are loaded, as when a muscle
pulls on a bone, or when a shark crunches its way through its victim’s leg?

At equilibrium, in the unloaded state, the distance between the constituent
atoms is 0.1 to 0.2 nm. At this interatomic distance the repulsion forces between
the two atoms balance the attraction forces. When the material is stretched or
compressed the atoms are forced out of their equilibrium positions and are
either parted or brought together until the forces generated between them,
either of attraction or repulsion respectively, balance the external force. This is
shown schematically in figure 1.1. Note that the line is nearly straight for a fair
distance on either side of the origin and that it curves eventually on the com-
pression side (the repulsion forces obey an inverse square law) and on the exten-
sion side. With most stiff materials the extension or compression is limited by
other factors (see section 1.6) to a matter of a fraction of the bond length so
that the relationship between force and distance is, to all intents and purposes,
linear. When the load is removed, the interatomic forces take the atoms back to
their original equilibrium positions.

It is a fairly simple exercise to extend this relationship to a material such as a
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Interatomic

force Tension

Interatomic
distance

compression

Figure 1.1  Stress—strain curve at the atomic level for a rigid material — the
idealised curve for a ‘perfect’ material. The origin represents the
equilibrium interatomic distance. On either side of the origin the
curve is nearly straight

crystal of hydroxyapatite in a bone. This crystal consists of a large number of
atoms held together by bonds. Then the behaviour of the entire crystal in
response to the force is the summed responses of the individual bonds. Thus one
arrives at the phenomenon known as Hooke’s law, originally stated (anagramma-
tically) as ut tensio, sic vis — as the extension, so the force. In other words
extension and force are directly and simply proportional to one another and this
is a direct outcome of the behaviour of the interatomic bond. But when dealing
with a material it is obvious that measurements cannot conveniently be made of
the interatomic distance (though they have been made using X-ray diffraction,
which confirms the following). What is actually measured is the increase in
length of the whole sample or a part of the sample (making the verifiable
assumption that in a homogeneous material one part will deform as much as the
next). This is then expressed as a ratio which is called the strain:

e=AllL, (1.1)

This ratio is expressed either as a number (e.g. 0.005) or as a percentage (e.g.
0.5%). The force acting on each bond is a function of the number of bonds
available to share the load. So if the area over which the force acts is doubled,
then the load carried by each bond will be halved. Thus it is important, if one is
to bring the data to the (notionally) irreducible level of the atomic bond, to
express the force as a function of the number of bonds which are responding to
it. In practice this means expressing the force as force per unit area, which is
called the stress:

0=flAo (1.2)
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The force is nowadays expressed in newtons (a function of mass and the accelera-
tion due to gravity — one newton is approximately the force due to 100 g, the
weight of an average apple), the area in square metres. The slope of the straight,
or Hookean, part of the curve in figure 1.1 is characteristic of the bond type and
is a function of the energy of the bond. For the same reason it is found that the
ratio of stress to strain is more or less characteristic of a material. The ratio of
stress to strain is the stiffness or Young modulus:

E=oale (1.3)

The units of £ are the same as for stress, since strain is a pure number. Graphs
showing the relationship between stress and strain are conventionally plotted
with the strain axis horizontal and the stress axis vertical, irrespective of whether
the relationship was determined by stretching the test piece in a machine and
recording the developed forces or by hanging masses onto the test piece and
recording the extension. Do not be surprised if it takes a long time for the
mental distinctions between stress and strain to become totally clear. Not only
are the concepts surprisingly difficult to disentangle, but the confusion is com-
pounded by the usage of stress and strain in everyday speech.

One other characteristic of Hookean materials is that they are usually elastic.
That is to say, they can be deformed (within limits) and will return to their
original shape almost immediately the force is removed (almost immediately
because the stress wave travels through the material at the speed of sound in that
material. So when you pull on the brake lever on your bicycle the brake blocks
begin to move a short time later, the time dependent partly on the speed of
sound in the steel cable and on the length of the cable). This use of the word
‘elastic’ must not be confused with the usage of the term as in ‘elastic band’
where elastic is taken to mean highly extensible.

The Young modulus is a measure of stiffness in simple extension or com-
pression. There are other ways of deforming a material which have different
effects on the interatomic forces and therefore different effects on the material.
Such a mode of deformation, frequently met, is shear. (Another mode of defor-
mation — volume change from which is derived the bulk modulus — is ignored
here.) As with the Young modulus, the shear modulus is defined as the ratio of
stress to strain. The shear stress (7) is defined as (see figure 1.2):

7= flAq (1.4)

Figure 1.2 Conditions for the definition of shear stress (equation 1.4)
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Figure 1.3  Conditions for the definition of shear strain (equation 1.5)

The shear strain is defined somewhat differently (figure 1.3). The strain, v, is
measured in radians and the shear modulus (G) is given by:

G=r1ly (1.5)

The simple picture given here is for isotropic materials whose structure and
mechanical response are the same in all directions. The Young modulus and the
shear modulus in an isotropic material can be related to each other by the
expression:

__E
201 +v)
where v is the Poisson ratio. This is simply the ratio between the elongation and

the lateral contraction (in either width or thickness) of the specimen (figure
1.4) as formalised in equation (1.5b):

G (1.52)

v=—e,flex = —e;fex (1.55)
The Poisson ratio is often neglected: it usually appears as a small, constant
number in many equations concerning biological materials and, as often as not,
its value is assumed to be 0.5, which is the value for rubbers at small extensions
(figure 1.5) and which assumes that the material retains a constant volume. This
problem is returned to in section 4.4.2 where some results are given for soft
tissues of various sorts. The problem occurs partly because soft tissues are ex-
tended by relatively large amounts (50% and more) and because they contain

Figure 1.4  Conditions for the definition of Poisson ratio (equation 1.5b)
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Figure 1.5  Variation of Poisson ratio with strain in a rubber

fibres. For instance a Poisson ratio of 1.0 can be obtained from a network or
trelliswork such as an orthogonally woven cloth (e.g. a handkerchief) but only in
directions at 45° to the warp and weft. A high Poisson ratio in all directions is
characteristic, if not diagnostic, of an open feltwork rather like a haystack.
Nonetheless it is quite feasible to have an open feltwork which is embedded in a
soggy jelly which will flow in and out of the mesh, whose Poisson ratio is 1.0 or
greater, yet whose volume is constant or nearly so. Thus the assumption that
because biological materials contain water and are therefore incompressible it
therefore follows that their Poisson ratio is 0.5 is not tenable. Not only is it
possible to have voids in a material filled with ‘alien’ fluids but it is also possible
to have a high Poisson ratio and constant volume (or a vanishingly low Poisson
ratio, section 4.4.2) with a feltwork of fibres embedded in a viscous matrix.
And once you start thinking of different ways of putting a material together it
soon appears possible (using strut frameworks resembling the fibres in a feltwork,
figure 1.6) to generate Poisson ratios of all magnitudes, even negative ones
(material expands in one of the directions orthogonal to the extension). But
until such studies are made — until a proper study is made of the Poisson ratios
of soft tissues under varying states of initial strain — » will remain not merely
neglected but inscrutable. Worse still, £ and G cannot be related with any cer-
tainty using equation (1.5a) so that much of biomechanics theory (many equa-
tions concerning the mechanics of skin and artery) is wrong since the assump-
tion v = 0.5” has been made.

\

Hinge points

Figure 1.6 A strut framework which will give strange Poisson ratios
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1.2 Rubbers and long-range forces

The second type of material to be considered is the rubbers or ‘elastomers’.
Very few rubbers exist in Nature in a pure and simple form. Obviously there is
the latex of Hevea brasilliensis, but this is neither cross-linked (as is required if
the rubber is to bear loads) nor are its rubbery properties used within the plant.
There are two animal rubbers which have been investigated — resilin (found in
wing-hinges, hair bases and so on in insects) and abductin (found in the inner
hinge ligament of bivalve molluscs). Both these have the properties which one
would expect of a rubber.

The important point about a rubber is that it is a long-chain polymer of ran-
dom conformation. That is to say it is composed of very long chains (molecular
weight ~ 10°) of one or more monomer units, and that each unit is more or less
freely jointed into the chain so that each joint allows a wide range of movement.
This is called ‘free rotation’ about the bonds of the backbone and is what distin-
guishes a rubbery polymer from a crystalline one: in a crystalline polymer (or in
areas of cyrstallinity) the free rotation of the units is severely restricted by close
packing, and rubbery behaviour is impossible. In actual fact it takes more than
one monomer unit or residue to make a freely rotating unit or ‘random link’.
This is because the monomer units are of a finite size and shape and so cannot
move with absolute freedom without hitting their neighbours (‘steric hindrance”).
With paraffin chains with a tetrahedral valence angle it takes three C—C links to
make up a freely rotating or equivalent random link; with cis-polyisoprene units,
as in Hevea rubber, the number of monomer units per random link is 0.77, since
there are four bonds to each isoprene unit. With proteins the equivalent random
link is 4 to 6 amino acids. Under the influence of Brownian motion the free
rotation of the equivalent random links about the backbone of the polymer
allows the chain to assume a random conformation. In other words there is no
pattern to the angles which each link makes with its neighbour other than a
statistical one. The fact that the molecules are in Brownian motion also leads to
the concept of kinetic freedom, which is a way of saying that the chains are
free to thresh around in any direction. Brownian motion is temperature dependent
—as the temperature increases so the movement of the molecules and their
subunits becomes more and more frenetic. In a similar manner, reduction in
temperature causes the kinetic activity to be reduced until finally, at a tempera-
ture dependent on the particular rubber in question, it ceases altogether and any
force which is exerted on the rubber meets the resistance of the covalent bonds
linking the atoms, probably bending rather than stretching them. A rubber at
the temperature of liquid nitrogen has similar properties to the ceramic phase of
bone, although it has a lower modulus, is Hookean and is said to be glassy. The
temperature at which this occurs is called the glass transition temperature.

However, the response of rubber to stress at normal temperatures is very
different (figure 1.7 compares the shape of curve for a rubber and a mild steel).
Rather than going deeply into the thermodynamics, suffice it to say that it is
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steel

Stress

YM

Strain
Figure 1.7 Comparison of the stress—strain curves of steel and rubber (the
slopes have not been accurately calculated but give some idea of
the differences — probably greater than shown here)

possible to divide the internal reaction of a material to an external force into
two components: one is due to the bonds holding the components together (as
in metals and glasses) and is loosely called the internal energy term. The other is
due to the mobility of the components and is called the entropy term. Now
entropy is a measure of the disorder of a system (life itself has been characterised
as a continual battle against entropy) and the significance of this term can be
appreciated as follows. When a piece of rubber is stretched the chains are pulled
out of their random configuration and come to be arranged rather more parallel
to the direction in which they are being extended. This partial orientation
represents an increase in order and thus a decrease in entropy. Now consider the
system as a Kinetic one, with the rubber chains writhing in Brownian motion. It is
this writhing which produces the tension. Imagine that you hold one of these
writhing molecules by the ends and try to pull it straight. You are trying, by
doing work on the molecule, to decrease its entropy. If the temperature increases
and the molecule writhes more violently it opposes your efforts with greater

force.
These ideas can be enshrined in the following mathematical expressions

whose derivations are not considered here but which are described in Wainwright
et al. (1976) and Treloar (1975). First the thermodynamic equation of state:

dU ds
/= (E)T‘T(E)T (16)

This states that the force is distributed between a change in internal energy
(dU/dl) and a (temperature dependent) change in entropy (dS/d)). In addition
it can be shown that:

sy o (I
(dl )T <dT>z 1.7y

and therefore that:

WY (Y
(&), (%) 18



