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INTRODUCTION

This conference was remarkably successful and |ts success is due to all of the authors and session chairmen
who worked together to bring it about. Thank you for this exceptional effort. We all shared in the workload, and °
as a result, SPIE produced a true state-of-the-art technical meeting and publication. This book is the result of
those efforts and it contains an accurate representation of our technology as it exists today. The quality of
papers is excellent. They contain sngmflcant new.material in the form of ideas, implementations, and
applications of the algorithms and architectures of dlgltal image processing. By comparing this work with that;
of the previous conference in 1983, one can see the dramatic progress we have made. From these strides, we

can exeitedly project into the future and predict mature image processing systems which will be used for
cognitive analysis and produce independent decisions.

Trends which have emerged during the past year in the image processing field and which were |Ilustrated !y
the papers presented at this conference are:

« a continuing shiftin emphasis from reconstructive algorithmic processes to feature extraction,
recognition, and identification of images. “ ' '

¢ an integrated approach to automated image processing, whlch is perhaps best nllustratedtby
the morphological and adaptive techniques and architectures shown during this confererice.

e more and more applications which fit the workstation approach and which can be accommo-
dated with micro-based distributed processors which may perform segments of a job or a
complete, very specialized operation.,”,

The field of digital image processing has grown in a few short years from a rather small band of government
sponsored R&D-oriented tasks to a robust technology which is finding its way into every imaginable type of
work. This growth should have been easy to predict from experience, as we chart the natural human drive to
‘improve and control our destiny and free ourselves for more lofty considerations. Itis very exciting to be apart
of the technica! innovations which have and will make all this possible. | expect that future meetings of those
who are advancing the state-of-the-art of the algorithms and-architectures of digital imaging will be more
exciting and contain significant breakthroughs leading to complete and cost- efficient solutions toour mulnple -
image processing opportunities.

Francis J. Corbett
Imaging Technology Incorporated
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The time~shared bus: a viable way to image multiprocessing

-] [-]
L. Van Eycken ( ), 2. Wambacqg ( ), A. Qosterlinck
E.5.A.T.-C.M,E.,, Catholic University of Leuven

de Croylaan 52, B-3030 Heverlee, Belgium VR

Abstract

Out of all possible multiprocessor interconnection schemes, the time-shared bus lLas some
advontages for hardware'realisations. Not only is it one of the simpliest and cheapest ways
to tie processors together, but it is also an ideal interconnection scheme if one wants to
keep the structure flexible and modular., On the other hand, the main disadvantage of the
time-shared bus is the limited bandwidth. Especially in image processing, this can be very
troublesome. This paper will try to explore the possibilities of a time~shared bus in this
field of application. A process is divided into a set of processors, each with a specified
number of inputs and outputs. Furthermore, each processor is determined by a set of delays
between these inputs and outputs. The model is characterised by four parameters:

- the delays per processor ; '

- the constancy of the delays

- the use or no use of internal memory in a processor ,

- the fact whether the operations on a processor are pipelined or not.

These parameters influence the complexity and the effectiveness of the hardware. Using them
to classify different hardware approaches, we develop a hardware definition of a time-shared
bus, thwt optimises the use of that bus in order to diminish the disadvantage of the limited
bandwidth. An example of a process, constructed by putting processors in pipeline and/or in
parallel, illustrate the possibilities. ’

Introducﬁlon

For the last few years, multiprocessing has become a fashionable word. Image processing is
a very interesting domain for applvina multiprocessinag, due to the nature of the image
processing itself. It is characterised hy a very high throuchput of data, usually ranging
from 3 to 50 Mpixels/sec with a wordlenath of 1 to 32 bit integer or floating point. However,
the computations are highly identical for all of the pixels at a low level of image proces-
sing, so this will translate itself very well to parallel computation. At higher levels this
:is much less trivial, but at that moment, the throughput rate is-usually reduced [1].

. .

Designs are usually made starting from a specific case. This has led to an immense variety
of iman~e processing architectures. Each one is fit very well for the group of applications,
it was develored for, but on the other hand most architectures are not flexible enough to
adapt to other problems or to new developments in the field of IC's. After a short overview
of existing architectures, we will put forward our desian-goals and derive an architecture
which fits these goals.

Approaches to image procéssing architectures.

The existing image processing architectures, as discussed in this paper, are considered
to be systems. A lot of very interesting chips are in development at this moment, but this
is not the lével we are talking about here. Althouah these developments have a certain
impact on the implementation of architectures, the latter should be independent of the low
level design as good as possible. One could compare it with the independence between the
design of a computer and the design of a communication network.

First of all, we have the whole range of standard (mini)computer svstems. These systems
usually have no special hardware for image processing, except for some input or display
hardware. Because the whole processing is purely software, they possess a large degree of
flexibhility. This makes them very well suited for research purposes, but far less interesting
for most of the realtime applications. For heavy computational tasks, as they exist in low
level image processing, one often resorts to additional array-processors [2]. They help to
speed up the computations, but they are seldom cost effective in actual applications.

Secondly, we have the highly integrated processor arrays. The use of a multitude of
identical processors pays off, especially for the low level image processing. The large
number of processors compensates for their simplicity, but of course we may expect more
conmplex processors in the future.

(°)

: Research assistant granted by the National Fund for Scientific Research (Belgium).
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The interconnection of the processors is usually a two-dimensional nearest neighbourhood
connection, because this reflects the two-dimensionality of the data. Some examples are the
CLIP IV [3] and MPP [ 4] . Because the parallelism comes from a very rigid hardware structure,
it is only worthwhile to use the current processor arrays in some applications, which
actually need this huge computing power. It excludes them from most of todays simple appli-
cations, because they are too powerful.

B third (and probably largest) category of image processors, consists of systems, that
are build from a set of dedic¢ated hardware processors. The biag advantage of these processors
is that they can be perfectly suited to a particular image processing task, with a minimum
hardware, cost. Typical examples are industrial and medical visual inspection systems [5].
One can determine which parts of the task are time critical and then adapt the possibilities
of the processor to these requirements. The hardware processors, if more than one is used,
are directly connected for the simple configurations. The form of the interconnection net-
work depends completely on the data flow in the processing task. On the other hand, a dis-
advantage is certainly the fact that for each different task, the processor hardware has to
be redesigned, which is a costly and time consuming process. Some manufacturers try to over-
come this limitation by keepina the dedicated hardware as oeneral as possible, e.g. by means
of microprogramming without losing too much of the advantace of simplicity. An example of
the latter is the VICOM system [6]. In these more flexible systems, different processors
are usually connected by a bus. )

Design goals

As pointéd out in the previous chapter, ‘a multitude of various architectures are popular
in the field of image processing. The choice depends mostly on the kind of problem, one has
to solve. This may seem to be very feasible for an actual application, but it automatically
limits the use to that application or to a similar one. This problem is especially acute for
laboratorium or development systems. In this case, one should like to have an image processor

which is flexible enough to be reconfigured depending on the particular application one wants
to study.

Reconfigurability means that the functiconality and performance can be changed without a
modification of the system design. Of course, it goes hand in hand with modularity. Besides
the possibility of growth, it reduces the effort needed for the development of a module
because it now becomes possible to use the same piece of hardware in very divergent appli-
cations. This is necessary to get a proper cost effectiveness of the hardware. If you have
- such a system, you can divide your image processina task into a number of standard operations.

Due to the high data rates and the volumes of data, a fair degree of parallelism should
be implementable. The parallelism can be obtained in three domains. The first one is a
parallelism on the level of intermodule communication, which is obtained by using a parallel
interconnection network or by using the transferred data more than once per transfer (broad-
casting). A second kind of parallelism is the parallel workina of modules. These modules can
be identical ones, if one merely tries to speed up that module, or may be different ones to
speed up the task as a whole. The modules may also be connected in a pipeline. This form of
parallelism gives a system with a minimum of intermediate memory tb store temporary results.
However, it is only advantageous if all of the pipelined processors work at about the same
throughput speed.

A last requirement 1is a teEhnoloqy independent structure. It can not be designed around a
specific revolutionary new chip. Eventhougk this would put you ahead of the competition, it
limits the possibilities of the system to those of the chip or its family members. We feel
that the design of a flexible architecture should be independent of the components used,
otherwise the desian will be stuck at a particular lewel of IC technology. The architecture
should be modular enough to allow you to use a set of components fairly optimal in one module
eventhough it will always be suboptimal to an architecture around these components alane.

The time-shared bus ! [

Eventhough the bus structure may be the most common way to connect processors, a lot of
other interconnection networks are available. A comparative study 1s made by Swartzlander
[7]. He studied the performance and the cost of networks. One of our design goals was modu-
larity, which can be cbtained more easily with a distributed network. In this case, a pro-
cessor hardware can be changed without affecting the global structure. Therefore, we choose
as the network cost not the switch complexity, as did Swartzlander, but rather the switch
complexity per processor. This 1s the extra cost of a processor, needed to put it into the
network and it reflects the I/0 complexity or the number of I/C lines needed per processor.
This is an important implementation factor,' because there is always a practical limit put to
this number.

SPIE Vol. 534 Architectures and Algorithms for Digital Image Processing il (1985)/ 3
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Table 1. Network comparison

NETWORK TYPE PERFORMANCE . SWITCH TYPE I/0 COMPLEXITY
, FULLY CONNECTED ‘ ! N/2 N N
\ CROSSBAR | 1/4 ! 1 N
STAR 1/4 N N
CUBE . LOG(N)* {N/2)**1/2 2 2LOG (N)
RING 1 2 2
BUS 1/2N 1 1

In table 1, different networks are compared. The performance is computed as the product
of the link bandwidth and the number of messages, divided by the round trip delay ( as
defined in [ 7] . The interconnection itself is characterised by the switch type. The switch
complexity is here defined as the number of positions. The I/O complexity is the product of
the switch complexity and the number of switches per processor. In the case of the star net-
work, the central switch is considered.

If one wants a modular distributed network, the I/0 complexity should be constant. If
this is the case, each processor has a constant number of I/0 lines, no matter how many pro-
cessors are put in the network. It excludes the fully connected network, the crossbar net-
work, the star network and the cube network from being considered as valuable candidates for
our interconnection network. From the I/0 point of view, the bus structure is more interes-
ting than the ring network, because the latter uses twice as much I/0 lines for the same
data transfer. On the other hand, the ring network is much better regarding performance.
Because 1t has an extra buffering at each stage of the network, the number of messages being
transferred simultaneously can increase with the number of processors, while for the bus
structure this number is constant, namely one. However, as, long as the performance can be
sustained by the bus, we prefer it for the former reason.

The properties of a bus structure are summarised in the follqwing list.
- This network is the simpliest of all interconnection networks.
- It is a modular network., Parts are easy to modify and the position of a module is not
important for the system performance. Furthermore, there is no extra cost to modify

the network when cne adds another processor.

- Communication delays can be held small, regardless of the physical realisation of the

system. "

- The sys:-em can be easily made fault tolerant for processor faults. On the other hand,
bus errors are difficult to remedy, except perhaps by using multiple busses.

~ The limited bandwidth may create problems at high data transfer volumes.

Efficiency study

The one serious argument against a bus structure seems to be its limited possibilities of
high transfer volumes, which is especially the case for image processing. However, one should
not exaggerate this problem, as will be shown in this chapter. We shall use figure 1 as an
example throughout the chapter to illustrate the effect of the optimalisations. It shows the
data flow of a particular task, In the case of a time-shared bus, each line gives a connec-
tion between processors, all at different time slices, each given a different number. After
processor P1, data is demultiplexed into the two processors P2 and P3 for reasons of speed
and after the parallel computing, multiplexed again into one data stream in processor P4.
During bus cycle 5, the data is broadcasted to P5 en P8. Bach processor black box is charac-
terised here by the processing delay between input(s) and output(s) and its constancy. The
processing can by pipelined in a processor itself and this pipelining time unit is a second
processor characteristic. A last processor property is the size of the local buffering.

The bandwidth of the bus is equal to the sum of all timeslices multiplied by the data
throughput speed at that position in the data flow. In most cases, the data throughput speed
at a certain level is inversely proportional to the number of interconnections (or time-
slices) needed at that level. This is illustrated by the two parallel processors P2 and P3
in the example. At that level, we need twice as much interconnection paths, but each one
works at about half of the speed, because that is the reason we put two processors in pa-
rallel for. If this rule holds, the bandwidth is equal to the input data speed multiplied
by the number of levels. The first exception to this rule is broadcasting. In this case, the
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/ ©2 2 PS5 f. P6 L P7
~S2 1 P4
3 P3 4 P8 8 P9
Fiqure 1: Data flow of an example, needing 9 busaccesses per data unit.

number of interconnections per level grows but the speed may remain the same. The second
exception is the reduction of data. In that case, the number of interconnections remains
constant but the throughput speed diminishes. So the low level operations are the most im-
portant ones in affecting the bandwidth. By choosing powerful processors (e.q. a small SIMD
processor array), one can keep the number of high speed interconnection levels low. From this
point on, only the low level interconnections will be taken into account in the models (data
reduction is not considered).

The maximal bandwidth of the bus system, as used in the previous paragraph, is hardware
defined. It is the product of the width of the data path and the bus frequency. On the other
hand, the effective bandwidth is determined by data flow of the task itself and the hardware
possibilities of the processors. The effective bandwidth 1s defined as the actual number of
transfers divided by the total time needed to transfer these data. In the following para-

graphs, some reasons for the loss of bandwidth are indicated, together with some possible
remedies.

The actual bus structure is highly influenced by the unit of data transfer. The unit de-
fines the minimum time, the bus is kept allocated to a certain interconnection. This implies
that between multiple processors an intermediate storage must be provided, that is large
enough to store an entire data unit. In the field of image processing (and certainly the low
level image processing), the unit of computation is very often an image. The disadvantage of
using such a large unit is that one needs a very large intermediate storage. An extra dis-
advantage 1is that the insertion of off-board intermediate memory requires one extra huscycle,
so it reduces the effective bandwidth. On the other hand, the advantace is that the bus
allocation is changed at a relatively slow rate, so the allocation hardware can be replaced
by a software allocation routine. To avoild the storage problem, one may use multiple busses
for the data transfer, but this helps only as long as the number of interconnections does
not exceed the number of busses. A more radical sclution is the reduction of the unit of
data transfer to a single pixel. The intermediate storage of one pixel is no longer a problem
but instead we get a more complex allocation hardware, because the bus is made available
again after a pixel transfer. However, we feel that the loss in cost effectiveness due to
the extra hardware is considerably less than to the extra image memories.

If processing delays are constant, the partitioning of the timeslices merely depends on
the input data rate., However, if the delays are not chosen properly, conflicts may arise on
the bus due to the time-sharing of the same wires. To avoid the buscontentions, one has to
slow down the input rate. In some cases, the constant delays may even create incompatibili-
ties, so the task will not be realisable. If in the example processor P5 and processor P8
have the same delay, bus cycle 6 and cycle 8 will always conflict, independently of the input
rate. Another restriction to aveid incompatibilities,—is that the closed loop delay must be
zero. The closed loop delay is the sum of the delays of the processors, one encounters when
going from a processor agaln to itself. Delays are added when traversing the processor from
input to output and subtracted when traversing from output to input. In the example, this
gives the following restriction (with Dij = delay from inputcycle 1 to outputcycle j ):

D + D
1

+ D -D - D - D = 0
01 2

2 5 -] 34 03

These restrictions diminish the degrees of freedom in choosing the processor delays.

The minimum datacycle is defined as the number of buscycles between subsequent data inputs
without any buscontention. This datacycle is affected by the dataflow of the task and the
features of processors. Because each interconnection must get the bus once per data input,
the absolute minimulm datacycle is the number of interconnections times the buscycle. Due to
these dataflow requirements, the minimum datacycle can never be smaller than 9 buscycles in
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the example. The effect of the delays of the processors ls illustrated by table 2, If the
combined delay between any two interconnections in the dataflow is equal to a multiple of
the datacycle, buscontention will arise between-the data, presented at the input, separated
exactly that multiple of the datacycle in time. The combined delay is the sum of the delays
of the traversed processors (negative delays when travelling from output to output, e.g.

D =-D +0D ). b :
68 56 58
. : LA
Table 2. Influence of choosing the delays and pipelining on the minimum datacycle.
D D ' | | \ 1
o1 as | Py, Daq D25 }DSG D67 D¥8 Pipe Datacycle
10 12 10 10 { 12} 10| 10 12| ves 9 _
10 12 10 10 12 10 10 12 no T2
5 6 7 8 9 10 |- 11 12 yes 20
5 6 7 8 9 %O 11 12 no - 20
" % H
) I ‘] o0 N N ~

L4

Pipelining a processor is subdividing the computation in independent sequential subtasks
and perform them in parallel. It has effect on the apparent speed of the processor. If a
processor with an input~output delay of 10 buscycles, has a pipelining unit time of 5 bus-
cycles, its apparent speed is doubled because it can now accept data every 5 cycles instead
of every 10 cycles without pipelining. 0f courge, pipelining has no effect on the delay it-
self. Because a chain can never work faster than the slowest part, the minimum datacycle can
not be smaller than the largest pipeline time unit. If processors are nbt pipelined, this
time unit equals the computation delay (rows of table 2 without pipelining). One can get rid
of this lower limit to the minimum datacycle by constructing every processor with a pipeline
time unit equal to the buscycle (rows of table 2 with pipelining). .

The fact that a certain task can be incompatible with the bus structure, is a serious
threat to its use. It should be noted that,by enlarging the delays of the processors, the
datacycle not necessarily increases, as demonstrated by table 2, and in the same way one can
get rid of the incompatibilities. If one only needs the system for one application, it is
possible to include the supplementary delays on board to diminish the minimum datacycle.
However, for research prototypes and systems for different applications, a more versatile
way of changing the processor delays is needed. A FIFO buffering is a perfect solution. With
a. length of the FIFQ equal to the datacycle divided by the pipeline time unit, one can limit
the minimum datacycle to the number of ipterconnections. In this way, one can attribute the
" cycles of the minimum datacycle among the different interconnections. To realise the delays,
one first computes the combined .delay from the input to that interconnection. Recursively,
starting from the input, the FIFO can make the combined delay equal to the smallest multiple
of the datacycle, larger than the actual delay, augmented with the attributed cycle. The
numbering of the attributed cycles in the example as shown in figure 1, results in a parti-
tioning of the delays as indicated on the first row of table 2. Let us suppose that all the
processors have a computation delay of 6 and we want to realise a minimum datacycle of 9
(1t is the lower 1limit). To choose the delay Dy:, we decide to give the output cycle of Pl
number 1. Then we look for the first multiple of the datacycle, augmented by the attributed
cycle, namely 1, which is 10, By taking a buffering of 4, this delay is achieved. For pro-
cessor P2, the combined delay (Do: + D;2 ) must be a multiple of 9, augmented with 2. A
buffering of 4 cycles on P2 will satisfy this requirement. ‘The other interconnections are
threated in an analog way. Of course, the local storace can be made much larger, because of
computation requirements.

Until now, we have considered only constant computation delays for the processors. In
real life, this is often not the case. A well known example is the dynamic memory, reeding
refresh. Every two or four milliseconds, the actual lenath of the memory cycles is doubled,
if one addresses the memory in a random fashion. To include other possible delays in our
model, we need a number of identical processors, but with a different delay, in the dataflow
schematic. In figure 1, processor P8 could stand for a pseudo-processor, doubling e.g. the
memory-processor P5, with a delay equal to the access delay plus the refresh delay. If a
processor has many different possible delays, this will create an enormous numbeXx. of modules.
If the number of modules increases, the number of interconnections increases too, which
leads to an increase of the minimum datacycle. This problem can be solved by using data
transfers with handshaking (used together with local bufferina). Without handshaking, one
has to choose the minimum datacycle large enouah to take into account every combination of
varying delays. With handshakina, processing further on in the dataflow chain will be post-
poned until the data becomes ready. Because this is simply a shift in time, it has no in-
fluence oh the effective bandwidth as in the case of no handshakinga.

hY
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Conclusion

Thanks to its modularity and simplicitv, the bus structured design 1is a very popular
interconnection scheme. The limited bandwidth does not restrict the possibilities too much
if the number of low level image processing stages is limited to a small number. Degradation
of the effective bandwidth can be much more damaging. To remedy this, the follcwing processor
extensions are proposed. Processors are speeded up by pipelining. A local FIFO buffering and
the data transfer with handshaking will allow bus optimisation. These concepts are tried out
by a bus structure, designed at our lab [8].
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Abstract

The Dualistic Model for Computer Architecture Description uses a hierarchy of abstraction levels to describe
a computer in arbitrary steps of refinement from the top of the user interface to the bottom of the gate level.
In our Dualistic Model the description of an architecture may be divided into two major parts called "Concept"
and "Realization'.

The Concept of an architecture on each level of the hierarchy is an Abstract Data Type that describes the
functionality of the computer and an implementation of that data type relative to the data type of the next
lower level of abstraction. The Realization on each level comprises a language describing the means of user
interaction with the machine, and a processor interpreting this language in terms of the language of the lower
level. The surface of each hierarchical level, the data type and the language express the behaviour of a ma-
chine at this level, whereas the implementation and the processor describe the structure of the algorithms and
the system. In this model the Principle of Operation maps the object and computational structure of - the Concept
onto the structures of the Realization.

Describing a system in terms of the Dualistic Model is therefore a process of refinenent starting at a mere
description of behaviour and ending at a description of structure. This model has proven to be a very valuable
tool in exploiting the parallelism in a problem and it is very tronsparent in discovering the points where par-
allelism is lost in a special architecture. It has successfully been used in a project on a survey of Computer’
Architecture for Image Processing and Pattern Analysis in Germany.

Introduction

The description of computer architectures had been the first and basic problem in our project of a survey
of German computer architecture for image processing and pattern recognition. We found the description of a
special architecture being handled as an informal and individual process that depends on the author and the pe-
culiarities of the machine being talked about. Formal approaches had seldom been made, the best-known one is
the classification scheme by Flynn. Attempts have also been made on the gate and register lele but merely as
a specification tool. At present two formal systems are known in Germany, the first (of Giloi™) describes an
architecture by the classification of control and information structure, the second (of HindlerZ) schematizes
and counts the logic blocks and modules. However, they appeared not to be suitable for our problem in some as-
pects, therefore an own formal description tool was worked on.

The dualistic model

We based our attempt upon the experience that first every description of any subject consists of two aspects
- the description of behaviour and the description of structure - second, as Prof. Baitinger3 has shown in one
of his courses, the mere description of behaviour is equivalent to the description of mere structure, and third
there exist many levels in between. So Prof. Baitinger pointed out that computer architecture is the product of
behaviour and structure.

Next we considered the importance of a clear and separated description of the mathematical aspects of a compyt-
er architecture. Therefore we chose to base our description tool on the theory of Abstract Data Types. Bauer
has proved this approach to be a valuable tool in the theory of programming. This background in mind we devel-
oped a bipartite model of the description process based on the theory of abstract data types and abstract ma-
chines.

The first part of this model - the Concept - is the description of the mathematical aspects by means of the
theory of abstract data types, the second part - the Realization - is the description of the machine in terms
of abstract processors. According to the idea of duality of behaviour and structure and according to the use of
hierarchical levels in the theory of abstract data types the Concept is a hierarchy of abstract data types, in
which every higher level is represented by an implementation of the higher type with functions of the lower
one. On the other side the Realization is defined by a hierarchy of languages interpreted by processors that
themselves are formulated by instructions of the lower language. So we have a hierarchy of Concept and Realiza-
tion in which the data type and the language define the behaviour of the machine, the implementation and the
processor define the structure. (See Figure 1)

A third part of the dualistic model, called the principle operation, maps every level of the Concept onto

the Realization and therefore defines the rules how the structures of the implementation correspond to the
structures of the processor. (See Appendix for the detailed plot of a correct definition). There is not enough
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room to give a full example of an application of the Dualistic Model as shown in the report55’6. Instead, some
results of the theoretical considerations on algorithmic structures and computer architecture in the lieht of
the presented model are shown.

Parallelity, seriality and algorithmic structures

Abstract data types define functions and sets of objects these functions are defined on. A data type is
assumed as a primitive a higher data type is implemented on, e.g., the body of integers. It defines the basis
relative to which the higher type (or types) and its properties are defined. Following the rules of abstract
algebra objects and functions of the higher type can be defined by means of the primitives., Thus, composite
objects with their corresponding constructing and selecting functions and composite functions defining the
functions of the higher type are obtained. As the data type is a description of the behaviour, the process of
its implementation is defining structure. A distinction between object and computational structure related to
composite objects and composite functions is made. As an example the convolution of vectors of integers is con-
sidered. (See Figure 2). It is defined by the following equation:

\V/ Gy =iwl *Fin _ (1)

€01,k 1=0

for vectors F with k elements and kernals W with n elements.

In the example the cobjects are structured by linear order and the computational structure is defined by dis-
joint binary trees of minimal depth. Using the rules of commutativity and distributivity one can recognize that
this is not the only possible structure. Among the possible permutations there is also the tree of maximal
depth. (See Figure 3.) As can be shown, there is one disjoint tree for every element of the result vector and
each one of these trees is only different in the objects it transforms. Keeping this phenomenon in mind a lit-
tle digression in graph theory follows.

Digression: parallelity and seriality as properties of the computational structure

- Starting from the resulting object every incoming arc of the computational structure is followed and the
knots are pmarked by incrementing the number of its descendant starting with O at the result object. That
number is called the level of the knot.

-~ The biggest number before reaching thec input objects is defined as the Seriality of the computational struc-
ture. .

- The most often occuring knot number is defined as the Parallelity of the computational structure.

- The product of parallelity and seriality devided by the total number of knots is defined as the Squareness
of the computational structure,

Back to the example one can compute these numbers for the twoe different trees mentioned above.

minimum depth tree:

seriality = (1d n) + 1 (2)
parallelity = n * k (3
squareness = 2 ((%g ?>l+ 1) > 1 (4)

maximum depth tree:

seriality = n ‘ . (5)
parallelity = 2k (6)
squareness = | (7)

Figure 2 and Figure 3 have shown that the computational structure consists of k disjeoint trees. This fact is
related to the appearence of figure k in equations (3) and (6), which shows that parallelity depends on the
length of the vector to be convolved. Parallelity as a structural property therefore depends on the function
and the object and may be divided into object parallelity and computational parallelity. Seriality defines the
minimum number of steps the computation of the functisn needs. Squareness is related to the efficiency of exe-
cution of this function on a parallel computer. This figure gives the ratin of knots on the broadest and nar-
rowest level in the computatinnal structure and therefore it defines the ratio of unused processing elements
in a computer which exploits maximum parallelity. The closer this figure is to | the more efficiently the
structure may be mapped onto a pipelining or systolic processor.

Algorithm = logic + control

Following this sentence of Kowalski’ we merely talked about logic up to now. Considering the precedence re-
lation expressed by the arcs in the graphs the data dependence may be seen as control or, if prefered, the
choice of one of the equivalent graphs expresses the control.
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Control in algorithms is closely related to the notion of processing or the introduction of a sequence in
time. This aspect of control is contained in the operation principle which states the rules of object represen-
tation and sequential versus parallel execution. The opesration principle has to be seen as the mapping of ob-
jects and functions on the machine. So the machine, as third degree of freedom in the spacification pro:zess,
introduces control through the machine structure and the control of information flow.

In the top down process of "programming” a data type on a machine the progress of refinement and the choice
of operation principle and machine reduce the possibilities of choice and introduce control., In this process
parallelity is reduced as far as required by the introduction of control.

For example the minimum depth tree in Figure 2 is not suited for execution on a pipeline processor because
there is no regular structure in a mapping on a linear order in time. The maximum depth tree optimally fits in
that principle of operation, allthough parallelity is smaller.

As a consequence of the refinement process being a sequence of introduction of contrcl and serialization
the parallelity coatained in the original problem is lcst. The effort of compiler optimization and parallel
execution of v. Neumann languages have proven the extraction of parallelity out of a serial realization as -
fruitless if not in most cases impossible. Therefore great care in the design process has to be taken as the
introduction of contrel.

The design process

The dualistic model has some influence on the view of the design process. A consequent application of our ideas
leads to some design rules of proceeding in the design process of a computer that seem to be useful in today's
computer architecture:

1. Specify the data type carefully.

2. Choose a reasonable elementary level depending on the constraints of your design.

3. Choose appropriate intermediate levels to supply landmarks in the design process.

4. Try to find implementations with regular structures and look for the possibility to reduce the variety of
structures to a small set of closely related ones.

5. Find appropriate building blocks to realize the functions of your concept.

6. Find a realizable structure for your processor which is easy to map onto the structures of your objects and
functions,

7. Look for a principle of operation which exploits most parallelism in mapping the concept onto the machine.

Those rules form no independent set of instructions which garantee a good design. On the contrary, as every
choice reduces the setof possible solutions in each of the tree parts of the description model, the design is
more a guided trial and error process. Neverthaless, our experience is positive and therefore we think of our
dualistic model as a good guideline in computer architecture.
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Appendix: definitions

description of a computer by specifying a hierarchy of virtual mashines that are re-

computer architecture:
: presented by concept and realization,

concept:

hierarchy of abstract data types and their implementation
realization: hierarchy of languages and processors that interpret these languages
data type: definition of an abstact algebra by specifying a set of objects and functions basing
upon these sets.
implementation: representation of a type's objects and functions by object structures and computation-
al structures of a primitive, b
processor: map of a language onto a primitive, given by a function principle ani an organization.
organization: the set of a processor's functional units, their connecting structure and the related

funcris. principle:

object representation:
information control:
processing structure:

processing control:
primitive:
elemental:

communication control. _

a processor's object represantation, its information control, the processing structure
and processing control.

description of the representation of an object within the abstract mashine.

control to handle the representation of objects.

representation of the structure of the algorithms in order to interpret the higher

by instructions of the primitive,

control of the flow of instructjons in time and space.

mashine level relative to which a higher level is defined.

mashine level without an explicit definition, i.e., for an elemental level neither an
implementation nor a processor must be specified. The elemental level constitutes a
reference system relative to which other levels can be defined.
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