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*‘Which shall be the Laureatc s notebook?"’

***Sbodikins! I am wholly fuddled! Eight species of common notebook""
**Sixteen, sir; sixteen, if I may,” Bragg said proudly. ‘‘Ye may have

A thin plain cardboard folio,

A thin plain cardboard quarto,
A thin plain leather folio,

A thin ruled cardboard folio,

A fat plain cardboard folio,

A thin plain leather quarto,

A thin ruled cardboard quarto,
A fat plain cardboard quarto,

A thin ruled leather folio, , ..
A fat ruled cardboard folio,

A fat plain leather folio,

A thin ruled leather quarto,

A fat ruled cardboard quaito,
" A fat plain leather quarto, ‘
A fat ruled leather folio, or

A fat ruled leather quarto.”’

“Stop!’’ cried Ebenezer, shakmg his head as though in pam “'sz me Pit"'

—John Banh The S‘otweed Factor%



PREFACE

This book is the result of a beginning graduate-level course taught by the author
at the University of California, San Diego, for the last eight years. The students
have had diverse backgrounds with the majority of them being applied mathe-
matics or computer science majors. Many topics were covered during this period
that do not appear in this book. The topics presented here are those that, in our
opinion (author and students), contain the most basic and useful ideas for the
computer scientist and apphed mathematician. More recently, selections from
this book have been the basis for an upper-division undergraduate course (see
SUGGESTIONS ON HOW TO USE THIS BOOK).

This book’s organization reflects my preference for presenting this material
in a “‘seminar style,’’ with many trips to the blackboard by students. Each PART
is divided into a BASIC CONCEPTS chapter followed by four TOPICS chapters.
The two PARTS reflect the general division of combinatorics into *‘enumeration”
and *‘graph theory,” although we have taken considerable liberties with the
classical approach to both of these subjects. These PARTS are independent of
cach other and can be done in either order.

For most students, even very clever ones, the process of learning to express
their mathematical ideas both orally and in writing is a somewhat painful ex-
perience. For pure mathematicians, this learning process traditionally takes place
in the first rigorous course in analysis or algebra. The desire to provide similar
training for applied mathematicians and computer scientists through the presen-
tation of m.terial more directly related to their needs was a principal concern in
the organization of this book. Combinatorial mathematics provides an ideal
subject area for students to learn basic techniques of proof. At the same time,
we have tried to convey, through many figures and examples, the important role
of intuition in the process of devejgping an explanation of a mathematical con-
cept.

Finally, some comments regarding data structures and complexity of algo-
rithms are in order. Basic data structures are introduced early in this book, and
thie student is periodically encouraged to think about the complexity of various
algorithms. However, it is a mistake for the student at this level to be overly
concerned with *‘optimality’" of algorithms in terms of theoretical running time
estimates. Optimality and complexity results are generally asymptotic in nature.
If algorithms A for a family of problems {P,} has worst-case complexity O(n),
then algorithm B = *‘Use whatever algorithm seems to work best on. your



computer for solving P,,. If no answer has been found by the end of 10,000,000,000
years, switch over to algorithm A’ also has worst-case complexity O(n). In
other words, to be really useful, complexity results must take into consideration
programming and system-related factors that involve the actual program being
constructed. On the positive side, the attempt to create theoretically optimal
algorithms has led to the invention of many interesting and imaginative data
structures. It is the general form of these datg structures and not the optimality
results per se that should be the first concern of the student. It is better for the
student to experiment with these data structures, even if the algorithms produced
are *‘suboptimal,’’ than it is to memorize a collection of optimal algorithms.
Combinatorial mathematics provides a powerful intuitive or ‘‘geometric’’ frame-
work for the discussion of algorithmic concepts. The systematic exploitation of
this geometry of algorithms is emphasized over the complexity of algorithms in
this book.

S. Gill Williamson
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SUGGESTIONS ON HOW TO
USE THIS BOOK

Here are some ways this book has been used in various classroom and program-
matic situations:

1. In a small (fewer than 15 students), beginning-level graduate class, the
material can be presented by the students in the style of a seminar. One may
start with either PART ] or PART I, each of which contains ample material for
a semester course. Each PART begins with a BASIC CONCEPTS chapter which
should be completed first. The STUDY GUIDES which follow these SUGGES-
TIONS are designed to facilitate the making of assignments for class presentation.
It seem's best to keep the presentations fairly short so that four or-five students
may make their presentations per class session. There should be a number of
written assignments, at least during the first part of the course. Careful proofs
should be demanded. After completing the BASIC CONCEPTS chapter, one
can choose selections from the various TOPICS chapters according to the interests
of the students and the instructor. Except for Chapters 7 and 8, these TOPICS
chapters are essentially independent of each other. The seminar format sometimes
results in slower coverage of the material than if the instructor were to give most
of the presentations. If time is a factor, the instructor can present the material.
The benefit to the students of presenting the material themsclvcs generally seems
well worth the price of a slightly slower pace.

2. In a small, upper-division undergraduate course, the seminar format de- -
scribed above can be followed. One must go slower and emphasize the BASIC
CONCEPTS chapters. Generally, upper-division courses where this material has
been used have been larger (40 to 50 students). In this case one can again start
with PART I or PART ll. The material is presented by standard classroom
lectures. Written assignments are made each week. It was found helpful in such
classes to periodically have the students work exercises and examples in class.
The instructor can help the students get started and can give them hints. Students
who finish first can then help the others, and so on. Generally, one or two
prognmmmg projects have been assigned each quarter. One way to assign
. projects is to divide the class into small groups based on programmmg ability,
- including one good programmer in cach group as *‘group leader.’’ Each group
is given a different assignment and demonstrates their software to the instructor



Suggestions on How to Use This Book xi

at the end of the course. A question for each group may be included on the final
exam 1o see that all in that group have learned at least the basic ideas of the
project. A typical one-quarter course from PART I might be Chapter 1, Chapter
2, and selections from Chapter 3, 4, or 5. A one-quarter course from PART 11
might include Chapter 6 and Chapter 7 together with a related programming
project, or Chapter 6 together with selections from Chapters 7 and 9.

3. In a program which includes both a graduate and undergraduate course
covering this material, the two BASIC CONCEPTS chapters (plus other selec-
tions as indicated in 2 above) may be covered in the undergraduate course. A
two-quarter undergraduate course may be followed by a, two-quarter graduate
course. Some of the better undergraduate students may then take the graduate
course. If the undergraduate course is not a prerequisite to the graduate course,
one will be faced with a class where some of the students will not have studied
the BASIC CONCEPTS chapters. In this case it is essential to have a rapid
review of the BASIC CONCEPTS chapters. To speed things up, the instructor,
perhaps together with some of the students who have taken the undergraduate
course, can present the material with all students doing written exercises. One
can then proceed to a selection of material from the TOPICS as in 1 above.
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Chapter 1
Basic Concepts of Linear Order

We shall be concerned with studying basic finite sets from a point of view that
facilitates computations with these sets. Permutations, subsets, graphs, tree struc-
tures, partially and totally ordered sets, etc., are interesting in their own right.
They are also the fundamental building blocks for describing and constructing
a variety of algorithms. Our point of view will be motivated largely by these
algorithmic considerations. The construction and manipulation of linear lists is
one of the most fundamental techniques in the design and analysis of algorithms.
We begin by looking at the idea of a linear order from a somewhat *‘formal’’
point of view. In the process we develop some basic ideas to be used later on.

1.1 DEFINITION.

Let S be a set. A relation on S.isa funcnon from the Canes:an product, S X S
to any set T with two elements.

For example, T = {0,1}, T = {—1,+1}, and T = {false, true} could all be
used as the range T of a relation p on S. If the set T is fixed and S is finite,
then it is easily seen that there are 2P, p = |S|?, functions from § X S to T (if
S is a finite set, |S| denotes the cardmahry or number of elements of S). The
notion of a relation is, of course, a triviality in full generality. Two special
classes of relations, however, play an important descriptive role in the study of
algorithms. For the next definition, letp:S X S—>Thbea relation. Fix T =
{false, true}. We shall use the equwalent but more suggesnve notation “x p y"’
for *‘p(x,y) = true’’ and “'x p y' for “p(x,y) = false.”

1.2 DEFINITION.

A relation pon S is

(1) Reflexive if forall x € S, x p x.

(2) Symmetric if for all x, y € S, x py implies y p x.

(2) Antisymmetric if forall x,y € S, xpy,andypx implies x =Y.
(3) Transitive if for all x, y,z € S,xpyandypz implies X p z.

A relation p that satisfies 1, 2, and 3 is called an equivaleﬁce relation. A relation
p that satisfies 1, 2', and 3 is called an order relation.



Basic Concepts of Linear Order

The pesieral structure of equivalence relations is easy to understand because
of the well hnown comespondence between equivslence relations and partitions
of a set. '

1.3 DEFINITION.

Let 5 be a set. A partition of S is a collection € of subsets of S such that

U A = §, and if A and B are elements of 6, then either A = B or A and B
At

are disjoint. The elements of € (which are subsets of S by definition) are called
the blocks of €. € is discrete if each block has one element. The empty set
¢ € €.

Thus, if N* is the set of positive integers, then € = {E,O}, wherc E is the
set of even numbers and O is the set of odd numbers in N*,is a partition of
N*. The collection {{1,3,7}, {2,4,5,6}, {8}} is a partition of S = {1,. . .,8}.

1.4 DEFINITION.

Let p be an equivalence relation on S. For each s € S, let E, be the set {x:
x € S, x p s}. The set E; is called the equivalence class of s with respect tp
or the equivalence class of s.

1.5 THEOREM.

If p is an equivalence relation on a set S, then the collection € = {E,: s €¢ S}
of all p equivalence classes is a partition of S. Conversely, if € is any partition
of S, and x and y are elements of S, then define x p y if x and y belong to the
same block of 6. Then p is an equivalence relation on S, and 46 is the collection
of equivalence classes.

THEOREM 1.5 finds its way into many undergraduate courses in mathematics
(discrete math, real analysis, logic, algebra, group theory, linear aigebra). The
reader should attempt to reconstruct the proof and consult a reference if recessary .
Although the general structure of equivalence relations is quite clear from THEO-
REM 1.5, particular relations mighi not obviously be equivalence relations at
first glance. Transitivity, in particular, is sometimes a bit tricky to verify. Once
the axioms are verified for p, then the partition into equivalence classes follows
from THEOREM 1.5.

1.6 NOTATION.

The set of integers 1,. . .,n will be denoted by n. If A and B are sets, we write
f: A— B for a function f with domain A and range B. The set of all such
functions will be denoted by B* (note that if A and B are finite with cardinality
|A] = aand |B] = b, then [BA| = b*, hence the notation). The Image(f) is the
set {f(a): a € A}. For each b € B, f™'(b) is called the ‘‘inverse image of b"’

and is the set {a: a € A, f(a) = b}. The collection € = {f "'(b): b € lmage(f i
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is a partition of A and is called the Coimage(f). If Image(f) = B, then f is a
surjection. If Coimage(f) is discrete, then f is an injection. If f is both an injection
and a surjection, it is a bijection. It is easily seen that if JA] = |B] (both finite),
then f is an injection if and only if it is a surjection. The injections of A* are
called the permutations of A, A finite.

As an example of the above ideas, consider f € 6 where f ="

o _

(: : ’ ;g . The Image(f) = {1,2,3}. Coimage(f) = {{1,3}, {5.6}, {2.4}}.
This function can be written in one-line notation as (1 3 1 3 2 2). This notation
specifies the function if the domain is known an®specified in some order. Some
permutations of 6 in one-line notation are (56 3 2 14)or(423561).

We shall see many examples in the text of equivalence relations. We mention
a few examples here (it is conventional to use a symbol such as ~ rather than
p when working with equivalence relations). ‘

1.7 EXAMPLES OF EQUIVALENCE RELATIONS.

(1) S = 22 with f ~ g if Image(f) = Image(g). The equivalence classes are
{1 DL{12,021D),Q211),(122),212),221)}, and {(2 2 2)}.
. We use one line notation for all functions.
2) S = 22 with f ~ g if Coimage(f) = Coimage(g). The equivalence classes
are {(111), 2221, {(112), 22D}, {(121), 212)}, and {(122),
21 . .

(3) S = 22 with f ~ g if Max(f) = Max(g). There are two equivalence classes.
4) S = 22 with f ~ g if f is a cyclic shift of g: (1 12),(21 1), and (1 2 1)
are cyclic shifts of each other. ’

(5) S = 2 withf ~ gif f(1) + f(@r + f3) = g(1) + g(2) + g@3).

For the reader who knows a little graph theory:

(6) Let G = (V,E) be a graph. Define an equivalence relation on V by x ~ y
if there is a path in G from x to y. The equivalence classes are used to define
the connected components of G. .

(7) Let G = (V,E) be a graph. Define an equivalence relation on E by ¢ ~
if ¢ and f lie on the same simple (not self-intersecting) cycle of G. The
equivalence classes are used to define the biconnected components of G.
Check transitivity here. Assume e ~ e.

(8) LetS = {(a,b):aand b integers, b # 0}. Define (a,b) ~ (2’ ,b’) ifab’ = ba’.
This is the equivalence relation used in the formal definition of the rational
numbers. o

(9) Let {a,} and {b,} be two infinite sequences of rational numbers. Define {a,}
~ {ba} if lim (a, ~ b,) = 0. Such an equivalence relation is used in the

nrex

formal development of the real number system.



6 Basic Concepts of Linear Order

The gencral structure of order relations is more compiex than that of equiv-
. alence relations. The notation x = y or x = y is often used for order relations
rather than X p y. A set S together with an order relation  is often called a -
**partially ordered set’* or *‘poset.”” We write (S, ) to designate such a poset.
We use X « y to mean x xy, but x # y.

1.8 DEFINITION.

Let (S, %) be an ordered set. We say y covers x if x « y and if, for all 2 € S,
xxzxyimpliesx = zory = z. If y covers x, we write X ¢ y and we say
that y is a successor of x and x a predecessor of y.

1.9 EXAMPLES OF ORDERED SETS.

(1) (R, <) Real numbers with usual ordering.

(2) (N, =) Positive integers with usual ordering.

(3) Givena set A, let S = P(A), the set of all subsets of A. Then (S, C)is a
poset where **C**denotes the usual set inclusion.

(4) (m(A), 2), where w(A) = partitions of a set A, and m, £ m, if myis a
refinement of w,, e.g., if A = 8, m = {{1,3,5}, {2,4,6}, {78} and m; =
"{{1,3}, {5). {2.6}, {4}, {7,8}}, then m, x . (Blocks of m, are split further
to gct bhckﬁ of 1[2)

(5) (N, %), where x x y if and only if x|y (**x divides y*).

(6) 2 (set of functions from d to ), with f < g if and only if f(x) < g(i) for
all i.

1.10 DEFINITION.

Given a poset P = (S, =), let P, = (S, ¢). We create a diagram of P, by
connecting a to b with a line if and only if a covers b. This diagram of P, is
called the Hasse diagram of P.

1.11 HASSE DIAGRAM FOR S = 12, WITH x|y AS THE ORDER
RELATION.

\/ N\
\%

\l - 7
n

Figure 1.11
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1.12 HASSE DIAGRAMS OF ($(2),C), ALL SUBSETS OF 2 WITH
INCLUSION AND (S, =).

.2) p 5

<O\
N

Figure 1.12

1.13 EXERCISE.

(1) Let M, be the set of all n X n matrices with real entries. Define a relation
~ on M, X M, by (A,B) ~(C,D)if A + D = B + C. Show that ~
an equivalence relation on M, X M.

(2) Let AL, be as in (). Deﬁnc A ~ B if there is a nonsingular matrix P such
thatP A P~! = B. Show that ~ is an equivalence relation on M,,. A student
who has studied linear algebra should be able to give a good description of
the equivalence classes for this equivalence relation.

(3) Let p, be a relation on S and p2 a relation on T. Define a relation p; on
S X T by (s,t)pa(s’,t') if sp;s’ and tpyt’. Show that p; is an equivalence
relation if both p; and p, are equivalence relations. Show p; is an order
relation if both p, and p, are order relations.

(4) Construct the Hasse diagram of (#(4), C) and (18.]). See EXAMPLES
1.9(3) and 1.9(5). See Figure 1.11 for (12.]).

(5) Let p be a reflexive, symmetric refation on S. Define a relation p’ on S by
sp't if there exists some sequence Uy,. . .4, @ S such%hi!spul. UiPl2,. . . UpPL.
Show that p’ is an equivalence relation on §.

(6) Referring to EXAMPLES 1.9(3) and 1.9(6), cmmdtr (P, C) and
({0,1)¢, =<). For A € P(d), Iet T, € {0,1} be defimed by fy(x) = 0 if
X € A, 1if x € A. Show that the map ¢{A) = { is a bijection from P(d)
to {0,1}¢. Show that A C B if and only if f, = . Such a mad ¢ it called
an order preserving bijection between the two poskts. Th; function f, is
called the characteristic finction of A.

There is an extensive and quite fascinating matherstical theosy of pastistly
ordered sets. From an algorithmic poiat of view, howevar, tit- most basic tech-
niques involve working with various types of lintm_‘ orders. A poset (S,<) is



