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Preface

How to read this book

In most books it is important to read all chapters in consecutive order. This is not
necessarily the best way to read this book and therefore we give you some guidelines. An
elementary presentation of the theory of errors will be found in chapters 2—8. The study is
rather concentrated and detailed proofs are not always included. It is anticipated that the
reader will use this part of the book as a refresher course and a textbook on statistics
should be consulted whenever needed.

In the following chapters multidimensional problems are analyzed in various ways. The
principal problems are normally first presented in a matrix approach with the use of
classical infinitesimal operations. A general approach then follows without any infinitesimal
operations. Only the elementary algebraic matrix operations, subtractions, multiplications
and inversions are used in this study.

Generalized matrix inverses are introduced in chapter 9 but many readers will find it
convenient to make a parallel study of appendix 2 in order to obain more detailed proofs.
An early study of chapter 29 will be of value for readers who ask for an easy approach to
generalized inverses in the method of least squares.

The multidimensional normal distribution is presented in chapter 18 together with a
general proof for independent sums of squares.

There are applications in almost all chapters but the greater part of applications will be
found in chapters 14—18. Most of the applications are taken from plane geometry,
surveying, photogrammetry, geodesy, physics and geophysics. In most studies an analysis of
variance together with hypothesis testing is included. '

It is known, that many readers use a textbook more or less as an encyclopedia, and
therefore some over-lapping between the different chapters has been used. See for example
the introduction to chapters 11 and 11.1.

Chapters 23, 24 and 25 are devoted to more sophisticated estimation problems.

The nonstochastic error concept is normally not considered in the theory of errors, but
in chapter Z8, the basic concepts of error norms can be found. For modern computer
programming, this section is of special importance.

It should be noted that, for educational reasons, we often present observations with only
very few decimal digits in the given examples. This is in contradiction to sound practical
procedures. Furthermore, most examples have been solved in a computer and only a limited
number of digits is included in the answers. Therefore, small differences sometimes may be
found when recomputing.

Generation in a computer of the normal, #- and F-distributions from random numbers is
discussed. Most numerical studies of systems of equations include a determination of the
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condition number of the system in order to give the computer aspects. Manipulations with
the condition numbers are used in order to improve the stability of solutions.

It is emphasized that the consecutive testing with analytlcal methods should be verified
with the use of a discrete computer approach.

This book is the English edition of the Swedish textbook Felteori by the author,
published in 1955. All chapters from 22 on are new, and some of the earlier chapters have
been revised.
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Chapter 1

Introduction

Kl

Modern society is highly dependent on advanced measuring techniques. We are all
intrigued by the outstanding achievements of the astronauts and others who, together, have
conquered the moon, and who perhaps will soon conquer other planets. These challenging
results, all based on the most refined measuring techniques, have tremendously increased
our interest in measurements and their mathematical treatment, during the latest decade.

Werner Heisenberg formulated, in 1927, the “uncertainty” principle which defines the
ultimate accuracy of measurements. He showed that it is basically impossible to fix the
coordinates of a particle with higher accuracy than is given by the magnitude of Planck’s
quantum constant, h, which is of the order 6.6 x 10727 erg sec. Heisenberg claimed that an
observation must always affect the event being observed, and this interference will finally
lead to a fundamental limitation in the accuracy of the observation.

Using this approach from quantum physics, we can hardly expect that the true value of
a physical quantity can be determined by measurements. However, this fundamental
indeterminacy is more philosophical than practical for most operations that we have to
face in life. If the length of a scale is not uniquely defined for any moment, according to
Heisenberg it will be impossible to determine the error in any measurement made with the
scale. Apparently, the definition of an error is not as simple as sometimes is anticipated. In
general, most people accept the philosophy that statements are either correct or incorrect.
The perceptions of different persons who are witness to the same event are often com-
pletely different. There are countless examples of trials at court, where the “truth” is
different for the two opponents. Very seldom can we claim that one of the opponents is
lying and the other is telling the truth. When Mr A claims that a crowd included four
persons, and Mr B claims he only saw two persons, both statements might be correct and
error free. If the correct number is four, we commit an error when using Mr B’s statement
for a determination of the size of the crowd. This means that an error can seldom be
uniquely deﬁngd in practical life. When we come to more sophisticated problems the
situation will be more complicated and we have to find a useful definition of error. For
most applications the following definition will be acceptable:

Error = Observation — True Value

We have already indicated that the “true value” is normally unattainable. However, in
mathematics the uncertainty principle is often irrelevant and here we even find operations
which can be uniquely defined in an exact way. For example, we can define a linear algebra
usinga+b+c=0.
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1.1 Rounding Errors .
In applied mathematics we can expect certain difficulties when we try to present a
mathematical relation using digital numbers. If the exact primary relation is written:

1/3+1/3-2/3=0
then the digital presentation might be
0.333 + 0.333 — 0.667 = —0.001

Clearly we are here exposed to rounding errors.

This type of error can normally be determined with any wanted number of digits, but in
practical application we are restricted in various ways. The limitations are not directly
linked with any scientific difficulties. It is more a question of the restrictions of time and
money that finally have to be considered when deciding on the adequate number of digits.
For the solution of very large systems of equations rounding errors start to be critical and
have to be carefully considered. In the following study we make no direct analysis of the
rounding errors. However, indirectly the rounding errors may have an influence on our
investigations. We make the assumption that the number of digits is chosen in such a way
that the influence of the rounding errors will be insignificant for our study. It should be
noted that there is also a second type of rounding errors which is relevant. First we make
a record of our observations. These records define our measurements. If the records are
given with too few digits we will suffer from rounding errors that give sets of observations
with identical results. When we use a measuring tape which is only graduated in meters we
can normally expect to obtain a set of observations that are identical at least for shorter
distances. For a tape with decimeter graduation perhaps two or three sets of identical
observations can be expected. Finally, if we use a tape which is graduated in millimeters we
may expect that all observations are different.

An example is given below:

Case 1: Records from One set:
- meter graduation 47,417,417, 47, 47
Case2: Records from Two sets:
: decimeter graduation 47.3,47.3,47.2,47.2,47.2
Case 3: Records from
‘ millimeter graduation 47.251,47.254,47.244, 47.241, 47.243

This example indicates that the records are made with an insufficient number of digits
for all cases except the last. As soon as we obtain some sets of identical records we can



NON-ACCIDENTAL ERRORS 3

suspect that the technique is inadequate and should be improved. The rounding errors can
be treated with statistical methods using rectangular distributions. In the general case
numerical analysis is used. A special study of the rounding errors will be f ound in chapter 28.

1.2 Non-accidental Errors

The most obvious non-accidental error is the blunder or gross error. When a measure-
ment is made and we observe 57 instead of the correct value of 75 we have committed a
blunder. Normally all such errors can be detected before they can influence the final result
and we are not going to make any further analysis of such errors.

In some cases it is possible, at an early stage, to determine that certain errors have a
clear systematic nature. An obvious case is when we have measured a length using a
measuring system in which the unit has a constant error. If the reference unit is a meter
and is 0.1% in error we will have 1.0 m error in a distance of 1000 m. In order to give an
example of methods for the elimination of systematic errors we can mention geodetic
electro-optical distance measurements. The International Union of Geodesy and Geo-
physics has édopted a value of 299,792.5 km/sec as the vacuum velocity of light. This value
seems to have an error in the order of 100 m/sec, which means that a systematic error in
the order of 107 of the distance cannot be excluded if we use the international meter-
definition as the reference unit. However, if we disregard the meter-definition and, instead,
consider the given value for the velocity of light as the fundamental definition, then we are
in a much better situation. In astronomy and geodesy the velocity of light is a more natural
primary unit. The distances to stars are measured in light years or, perhaps more con-
veniently, in nanoseconds. However, these contradictions are of very little practical
importance for most studies and are only mentioned in order to show that systematic
errors sometimes are caused by unsuitable definitions of the primary units. With the
velocity of light in vacuum uniquely defined, we can determine any wanted length unit
with an extremely small systematic error, since atomic clocks give us time with very small
systematic errors. The frequency drift in an atomic clock is often smaller than 107!? of
the nominal frequency. With our present methods using crystal clocks in field operation,
we still have to consider the frequency errors of the oscillators.

There are considerable difficulties involved in transferring the velocity of light in
vacuum to an atmosphere. The atmospheric errors are not restricted to the refractive index.
We can seldom expect that our light ray travels in an atmosphere with constant physical
properties. In fact, we know that the atmosphere has a tendency to be distributed in
“layers™ around the earth and we must apply a correction for the curvature of the light
ray. This correction can be computed using parameters for a “normal atmosphere” but it
will probably be more correct to make use of measurements of the vertical angles at the
ends of our measured line. Another approach is to make use of the dispersion between red
and blue light.
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Geodetic distances are, normally, reduced to the reference ellipsoid and, therefore, an
additional correction is needed. This correction brings the gravity field of the earth into
our computations. The elevations of our points A and B above the reference ellipsoid are
normally computed with the geoid as an intermediate reference surface. The geoid is the
equipotential surface that coincides with mean sea level. We can determine this surface
_ after solving rather complicated integral equations which require gravity data from the

- entire earth. The height of the geoid above the reference surface is of the order of +100 m.
In this study we sometimes have to consider earth tides which give daily uplifts of the crust
in the order of +0.30 m.

If we go back to original measurement of distances we have to add a correction for the
change of the group velocity in the optical reflector. Furthermore, eacy, individual reading
of the phase angle in the electro-optical device has to be corrected for systematic errors
when using the earlier types of electro-optical devices. For instruments of this type the
total distance is computed as the number of whole modulation wave lengths and an
additional fraction of a modulation wave length. The number of whole wave lengths can
normally be uniquely determined. The additional fraction of a wave length is determined
with an electrical delayer. On account of the instability of the electrical delayer it is always
necessary to calibrate it, using an optical delayer as standard. It was soon found that
calibrations of this type are inconvenient in all practical work. Therefore, self-calibrating
systems are to be preferred whenever it is possible. In the newer instruments the phase
angles are measured directly. This method is self-calibrating in as much as the final fraction
of a wavelength can be determined without any significant errors. Similar relations are valid
when measuring distances with microwave systems. ’

The corrections and reductions which have to be considered in connection with electro-
optical distance measurements are summarized below:

. Correction to the accepted value of the vacuum velocity of light.

- Frequency correction for the oscillators of the measuring instrument.

. Reduction to group velocity using wave length, temperature and pressure measure-
ments.

. Correction for the curvature of the light ray.

. Correction for the internal and external eccentricities of the instrument and the
reflector.

6. Correction for the errors of all auxilliary instruments such as theodolites, ther-

mometers, pressure meters, gravity meters and levelling instruments.
7. Projection to the geoid. A
8. Projection to the reference ellipso@.

-
W N =

b

Thus there may be several hundred thousand sources of systematic errors which all
influence the final result of a single distance reduced to the reference surface of the earth.
Clearly, only geodetic measurements of the highest accuracy will need all the correcti&ls
1-8.
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Instruments which are used for the measurements of angles have also facilities for
self-calibration. With the standard type of theodolite this is accomplished by making
readings at two opposite positions on the circle graduation. Then the error of eccentricity
is eliminated. Systematic errors in the graduation are eliminated by repeating the measure-
ments in several series which are distributed all around the circle. Systematic errors in the
line of sight are eliminated by reversing the telescope and repeating the readings. Angular
measurements at the surface of the earth will be dependent on the gravity field since we
make use of the plumb-line for the orientation of ou instruments. Any deflection of the
plumb-line will give rise to systematic errors in both horizontal and vertical angles. The
plumb-line deflection can be computed using the gravity data for the entire earth.

To find the corrections it is necessary to solve complicated integral equations of dif-
ferent types involving the use of hundreds of thousands of gravity data. As an alternative
satellite data can be used. Local plumb-line deflections are seldom larger than 10”. Refrac-
tion errors in the vertical angles are often more than 10 times larger. Corrections for the
refraction errors are necessary when elevations are to be computed from vertical angles.
Simultaneous measurements of the vertical angles at opposite stations are often used for
this purpose. Measurements with red“and blue light can also be used for a determination of
the refraction errors. There is a further type of systematic error which is only relevant
when the final result is introduced into a mathematical model where the model itself might
include systematic errors. We car: take as an example a triangle where all distances and

" angles have been measured. If we use plane geometry for this elhpsmd we introduce new
systematic errors.

The presented list of corrections for systematic errors is only an example and in many
cases no information about systematic errors is available.

1.3 Accidental Errors

When discussing systematic errors we had no reason to ghestion the uniqueness of the
underlying measurements. However, we know from experience that most observations can
never be repeated and give identical results. This means that we also have to consider an
additional type of error — the accidental or random error. Accidental errors vary in such a
way that the individual errors cannot be precalculated in a meaningful way and it may on

" this basis appear relatively easy to distinguish between systematic and accidental errors. In
practice, the situation is more complicated and in our mathematical treatment of observa-
tion equations we are normally restricted to operate with estimates of the accidental errors.
It is obvious that the mathematical models can differ considerably and therefore no sharp
limits can be defined between accidental and non-accidental errors.

It is well known that the accidental errors follow certain general laws. According to
Gauss most physical observations have accidental errors with so-called normal distributions.
It has also been proved, and it is stated in the central limit theorem, that the limiting
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distribution for observations with errors from many different sources, will be the normal
type of distribution. This means that a mathematical treatment of the accidental errors can
be considered. In our following study we will make use of different tests, which make it
possibte to discriminate between systematic and accidental errors before any final com-
putations are made. However, normally it is impossible to make a complete separation
between accidental and non-accidental errors and thus there is no justification for a
rigorous approach of this type. The *“absolute truth” cannot be found from observations
that vary at random. For a number of physical investigations it seems of value to make a
careful study of the error itself and we are going to make use of a presentation where the
statistical approach is combined with an analysis of the observation errors.

1.4 Approach L

o,
g

Our presentation will make use of the generalized matrix algebra where any matrix has
at least one inverse. The generalized inverse gives us the sets of linear unbiased estimates.
This approach-emakes,us to display the total set of all errors consistent with our observa-
tion equations. Furthermore, it makes it possible to compute the minimum variances
directly from the elementary operations addition, subtraction, multiplication and inversion
of matrices. The generalized inverse can also be used to study interesting problems with
singular covariance matrices. Such problems are often importantin practical technology
-and we shall make a complete study of these problems when using coordinate systems
where no preference is given to any specific set of measurements. These.problems are for
example of interest when linking the networks from ‘different countries together in a global
network as well as when adjustment of directions are made for conventional triangulation.

1.5 Terminology

g
v

The classical theory of errors was developed by Gauss (1777~ 1855). The distribution of
the accidental errors was considered to be distinctly defined by the “normal distribution”
of Gauss, whilst the “method of least squares” presented an adequate solution with
“maximum probability”. In the early studies made by Gauss it was only possible to make
probability investigations for an infinite population. Later the German geodesist Helmert
included studies of the x2-distribution. In geodesy and astrondmy various methods of
adjustment were regularly used and of special interest were the adjustment by elemefits?
adjustment by conditions, combined adjustment and condition adjustment with unknowns.
In this way the method of least squares was fully explored for a number of applications.
An interesting generalization of the method of least squares was made by Markoff who
showed that the method gives the best linear (minimum variance) unbiased estimate for
any distribution with finite variance. Extensive studies of the distribution of the variance
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