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Preface

Scope, Aims, and Audiences

This book, Level Set Methods and Dynamic Implicit Surfaces is designed
to serve two purposes:

Parts I and Il introduce the reader to implicit surfaces and level set
methods. We have used these chapters to teach introductory courses on the
material to students with little more than a fundamental math background.
No prior knowledge of partial differential equations or numerical analysis
is required. These first eight chapters include enough detailed information
to allow students to create working level set codes from scratch.

Parts III and IV of this book are based on a series of papers published
by us and our colleagues. For the sake of brevity, a few details have been
occasionally omitted. These chapters do include thorough explanations and
enough of the significant details along with the appropriate references to
allow the reader to get a firm grasp on the material.

This book is an introduction to the subject. We have given examples of
the utility of the method to a diverse (but by no means complete} collection
of application areas. We have also tried to give complete numerical recipes
and a self-contained course in the appropriate numerical analysis. We be-
lieve that this book will enable users to apply the techniques presented here
to real problems.

The level set method has been used in a rapidly growing number of areas,
far too many to be represented here. These include epitaxial growth, opti-
mal design, CAD, MEMS, optimal control, and others where the simulation
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of moving interfaces plays a key role in the problem to be solved. A search of
“level set methods” on the Google website (which gave over 2,700 responses
as of May 2002) will give an interested reader some idea of the scope and
utility of the method. In addition, some exciting advances in the technology
have been made since we began writing this book. We hope to cover many of
these topics in a future edition. In the meantime you can find some exciting
animations and moving images as well as links to more relevant research pa-
pers via our personal web sites: http://graphics.stanford.edu/"fedkiw
and http://www.math.ucla.edu/"sjo/.
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Part I
Implicit Surfaces

In the next two chapters we introduce implicit surfaces and illustrate a
number of useful properties, focusing on those that will be of use to us
later in the text. A good general review can be found in [16]. In the first
chapter we discuss those properties that are true for a general implicit
representation. In the second chapter we introduce the notion of a signed
distance function with a Euclidean distance metric and a “1+” sign used to
indicate the inside and outside of the surface.







1

Implicit Functions

1.1 Points

In one spatial dimension, suppose we divide the real line into three distinct
pieces using the points £ = —1 and z = 1. That is, we define (—oo, —1),
(—1,1), and (1, 00) as three separate subdomains of interest, although we
regard the first and third as two disjoint pieces of the same region. We refer
to Q= = (—1,1) as the inside portion of the domain and Qt = (—o0, 1)U
(1,00) as the outside portion of the domain. The border between the inside
and the outside consists of the two points 82 = {-1,1} and is called
the interface. In one spatial dimension, the inside and outside regions are
one-dimensional objects, while the interface is less than one-dimensional.
In fact, the points making up the interface are zero-dimensional. More
generally, in R"™, subdomains are n-dimensional, while the interface has
dimension n — 1. We say that the interface has codimension one.

In an ezplicit interface representation one explicitly writes down the
points that belong to the interface as we did above when defining 8Q) =
{~1,1}. Alternatively, an ¢mplicit interface representation defines the inter-
face as the isocontour of some function. For example, the zero isocontour
of ¢(z) = 2% — 1 is the set of all points where ¢(z) = 0; i.e., it is ex-
actly 8Q = {~1,1}. This is shown in Figure 1.1. Note that the implicit
function ¢(z) is defined throughout the one-dimensional domain, while the
isocontour defining the interface is one dimension lower. More generally,
in 7, the implicit function ¢(&) is defined on all £ € R™, and its isocon-
tour has dimension n — 1. Initially, the implicit representation might seem
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QF Q QF
9>0 00 9>0

outside / &gdj \ outside

0Q
¢=0 ¢=0

interface interface

Figure 1.1. Implicit function ¢(x) = 2° — 1 defining the regions O~ and QF as
well as the boundary 80

wasteful, since the implicit function ¢(&) is defined on all of R, while the
interface has only dimension n — 1. However, we will see that a number of
very powerful tools are readily available when we use this representation.

Above, we chose the ¢(x) = 0 isocontour to represent the lower-
dimensional interface, but there is nothing special about the zero
isocontour. For example, the d)(a:) 1 isocontour of ¢(z) = z2, defines
the same interface, 9 = {—1,1}. In general, for any function ¢(&) and
an arbitrary isocontour ¢(Z) = a for some scalar a € R, we can define
#(Z) = #(F) — a, so that the #(Z) = 0 isocontour of ¢ is identical to the
#(F) = a isocontour of ¢. In addition, the functions ¢ and ¢ have identical
properties up to a scalar translation a. Moreover, the partial derivatives
of ¢ are the same as the partial derivatives of q,’), since the scalar vanishes
upon differentiation. Thus, throughout the text all of our implicit functions
¢(&) will be defined so that the ¢(Z) = 0 isocontour represents the interface
(unless otherwise specified).

1.2 Curves

In two spatial dimensions, our lower-dimensional interface is a curve that
separates R? into separate subdomains with nonzero areas. Here we are
limiting our interface curves to those that are closed, so that they have
clearly defined interior and exterior regions. As an example, consider ¢(&) =
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Q Q°
$<0 9>0

inside outside

-
e

p=x"+y'-1=0
interface

Figure 1.2. Implicit representation of the curve £ + 3% = 1.

z? + y? — 1, where the interface defined by the ¢(Z) = 0 isocontour is the
unit circle defined by dQ = {Z | |Z| = 1}. The interior region is the unit
open disk 2~ = {Z | || < 1}, and the exterior region is Q" = {Z | |Z| > 1}.
These regions are depicted in Figure 1.2. The explicit representation of this
interface is simply the unit circle defined by 9Q = {Z | |Z| = 1}.

In two spatial dimensions, the explicit interface definition needs to spec-
ify all the points on a curve. While in this case it is easy to do, it can be
somewhat more difficult for general curves. In general, one needs to param-
eterize the curve with a vector function Z(s), where the parameter s is in
[80, 87]- The condition that the curve be closed implies that (s,) = &(sf).

While it is convenient to use analytical descriptions as we have done
so far, complicated two-dimensional curves do not generally have such
simple representations. A convenient way of approximating an explicit
representation is to discretize the parameter s into a finite set of points
§o < +++ < 81 < 8; < 841 < -+ < 8y, where the subintervals [s;, ;1]
are not necessarily of equal size. For each point s; in parameter space,
we then store the corresponding two-dimensional location of the curve de-
noted by Z(s;). As the number of points in the discretized parameter space
is increased, so is the resolution (detail) of the two-dimensional curve.

The implicit representation can be stored with a discretization as well,
except now one needs to discretize all of R?, which is impractical, since it is
unbounded. Instead, we discretize a bounded subdomain D C R2. Within
this domain, we choose a finite set of points (z;,y;) fori =1,..., N to dis-
cretely approximate the implicit function ¢. This illustrates a drawback of
the implicit surface representation. Instead of resolving a one-dimensional
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interval [s,, sf], one needs to resolve a two-dimensional region D. More
generally, in ", a discretization of an explicit representation needs to re-
solve only an (n — 1)-dimensional set, while a discretization of an implicit
representation needs to resolve an n-dimensional set. This can be avoided,
in part, by placing all the points T very close to the interface, leaving the
rest of D unresolved. Since only the ¢(£) = 0 isocontour is important, only
the points & near this isocontour are actually needed to accurately repre-
sent the interface. The rest of D is unimportant. Clustering points near the
interface is a local approach to discretizing implicit representations. (We
will give more details about local approaches later.) Once we have chosen
the set of points that make up our discretization, we store the values of the
implicit function ¢(Z) at each of these points.

Neither the explicit nor the implicit discretization tells us where the in-
terface is located. Instead, they both give information at sample locations.
In the explicit representation, we know the location of a finite set of points
on the curve, but do not know the location of the remaining infinite set
of points (on the curve). Usually, interpolation is used to approximate the
location of points not represented in the discretization. For example, piece-
wise polynomial interpolation can be used to determine the shape of the
interface between the data points. Splines are usually appropriate for this.
Similarly, in the implicit representation we know the values of the implicit
function ¢ at only a finite number of points and need to use interpolation
to find the values of ¢ elsewhere. Even worse, here we may not know the
location of any of the points on the interface, unless we have luckily cho-
sen data points £ where ¢(Z) is exactly equal to zero. In order to locate
the interface, the ¢(&) = 0 isocontour needs to be interpolated from the
known values of ¢ at the data points. This is a rather standard procedure
accomplished by a variety of contour plotting routines.

The set of data points where the implicit function ¢ is defined is called
a grid. There are many ways of choosing the points in a grid, and these
lead to a number of different types of grids, e.g., unstructured, adaptive,
curvilinear. By far, the most popular grids, are Cartesian grids defined as
{(zi,y;) | 1 <4 <m,1 < j < n}. The natural orderings of the z; and y;
are usually used for convenience. That is, £; < +++ < Tj_1 < T; < Tyy1 <

< zmand yp < -0 < Yi-1 < ¥j < Yjip1 < - < Yp.Ina uniform
Cartesian grid, all the subintervals [z;,z;;1] are equal in size, and we set
Az = ziy1 — x;. Likewise, all the subintervals [y;,y;+1] are equal in size,
and we set Ay = y;4+1 — y;. Furthermore, it is usually convenient to choose
Az = Ay so that the approximation errors are the same in the z-direction
as they are in the y-direction. By definition, Cartesian grids imply the use
of a rectangular domain D = [z1, Z,»] X [y1, ¥»). Again, since ¢ is important
only near the interface, a local approach would indicate that many of the
grid points are not needed, and the implicit representation can be optimized
by storing only a subset of a uniform Cartesian grid. The Cartesian grid
points that are not sufficiently near the interface can be discarded.




