Applied
Mathematical
Sciences

Stanley Osher
153 Ronald Fedkiw

Level Set Methods and
Dynamic Implicit Surfaces

Stanley Osher Ronald Fedkiw

Level Set Methods and
Dynamic Implicit Surfaces

With 99 Figures, Including 24 in Full Color

¥ Springer

Stanley Osher Ronald Fedkiw

Department of Mathematics Department of Computer Science
University of California Stanford University

at Los Angeles Stanford, CA 94305-9020
Los Angeles, CA 90095-1555 USA
USA fedkiw@cs.stanford.edu
sjo@math.ucla.edu
Editors:
S.S. Antman J.E. Marsden L. Sirovich
Department of Mathematics Control and Dynamical Division of Applied
and Systems, 107-81 Mathematics
Institute for Physical Science California Institute of Brown University

and Technology Technology Providence, RI 02912
University of Maryland Pasadena, CA 91125 USA
College Park, MD 20742-4015 USA chico@camelot.mssm.edu
USA marsden®@cds.caltech.edu

ssa@math.umd.edu

Cover photos: Top left and right, hand and rat brain — Duc Nguyen and Hong-Kai
Zhao. Center campfire — Duc Nguyen and Nick Rasmussen and Industrial Light and
Magic. Lower left and center, water glasses — Steve Marschner and Doug Enright.

Mathematics Subject Classification (2000); 65Mxx, 65C20, 65D17, 65-02, 65V10, 73V

Library of Congress Cataloging-in-Publication Data
Osher, Stanley.
Level set methods and dynamic implicit surfaces / Stanley Osher, Ronald Fedkiw
p. cm. - (Applied mathematical sciences ; 153)
Includes bibliographical references and index.
ISBN 0-387-95482-1 (alk. paper)
1. Level set methods. 2. Implicit functions. 1. Fedkiw, Ronald P., 1968— II. Title.
III. Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 153
QA1.A647 vol. 153
[QC173.4]
510s—dc21

[515.8] 2002020939
ISBN 0-387-95482-1 Printed on acid-free paper.

© 2003 Springer-Verlag New York, Inc.

Allrights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Av-
enue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as
to whether or not they are subject to proprietary rights.

Printed in the United States of America.

98765432 SPIN 10920466
www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

Dedicated with love to Katy, Brittany, and Bobbie

Preface

Scope, Aims, and Audiences

This book, Level Set Methods and Dynamic Implicit Surfaces is designed
to serve two purposes:

Parts I and Il introduce the reader to implicit surfaces and level set
methods. We have used these chapters to teach introductory courses on the
material to students with little more than a fundamental math background.
No prior knowledge of partial differential equations or numerical analysis
is required. These first eight chapters include enough detailed information
to allow students to create working level set codes from scratch.

Parts III and IV of this book are based on a series of papers published
by us and our colleagues. For the sake of brevity, a few details have been
occasionally omitted. These chapters do include thorough explanations and
enough of the significant details along with the appropriate references to
allow the reader to get a firm grasp on the material.

This book is an introduction to the subject. We have given examples of
the utility of the method to a diverse (but by no means complete} collection
of application areas. We have also tried to give complete numerical recipes
and a self-contained course in the appropriate numerical analysis. We be-
lieve that this book will enable users to apply the techniques presented here
to real problems.

The level set method has been used in a rapidly growing number of areas,
far too many to be represented here. These include epitaxial growth, opti-
mal design, CAD, MEMS, optimal control, and others where the simulation

viil Preface

of moving interfaces plays a key role in the problem to be solved. A search of
“level set methods” on the Google website (which gave over 2,700 responses
as of May 2002) will give an interested reader some idea of the scope and
utility of the method. In addition, some exciting advances in the technology
have been made since we began writing this book. We hope to cover many of
these topics in a future edition. In the meantime you can find some exciting
animations and moving images as well as links to more relevant research pa-
pers via our personal web sites: http://graphics.stanford.edu/"fedkiw
and http://www.math.ucla.edu/"sjo/.

Acknowledgments

Many people have helped us in this effort. We thank the following col-
leagues in particular: Steve Marschner, Paul Romburg, Gary Hewer, and
Steve Ruuth for proofreading parts of the manuscript, Peter Smereka and
Li-Tien Cheng for providing figures for the chapter on Codimension-Two
Objects, Myungjoo Kang for providing figures for the chapter on Motion
Involving Mean Curvature and Motion in the Normal Direction, Antonio
Marquina and Frederic Gibou for help with the chapter on Image Restora-
tion, Hong-Kai Zhao for help with chapter 13, Reconstruction of Surfaces
from Unorganized Data Points, and Luminita Vese for help with the chap-
ter on Snakes, Active Contours, and Segmentation. We particularly thank
Barry Merriman for his extremely valuable collaboration on much of the
research described here. Of course we have benefitted immensely from col-
laborations and discussions with far too many people to mention. We hope
these colleagues and friends forgive us for omitting their names.

We would like to thank the following agencies for their support during
this period: ONR, AFOSR, NSF, ARO, and DARPA. We are particularly
grateful to Dr. Wen Masters of ONR for suggesting and believing in this
project and for all of her encouragement during some of the more difficult
times.

Finally, we thank our families and friends for putting up with us during
this exciting, but stressful period.

Los Angeles, California Stanley Osher
Stanford, California Ronald Fedkiw

Contents

Preface vii
Color Insert (facing page 146)
I Implicit Surfaces 1
1 Implicit Functions 3
1.1 Points 3
1.2 Curves 4
13 Surfaces 7
14 Geometry Toolbox 8
1.5 Calculus Toolbox 13
2 Signed Distance Functions 17
2.1 Imtroduction 17
2.2 Distance Functions 17
2.3 Signed Distance Functions 18
24 Examples. 19
2.5 Geometry and Calculus Toolboxes 21
IT Level Set Methods 23
3 Motion in an Externally Generated Velocity Field 25

3.1 Convection 25

X Contents

3.2
3.3
34
3.5

Upwind Differencing,
Hamilton-Jacobi ENO
Hamilton-Jacobi WENO

TVD Runge-Kutta

4 Motion Involving Mean Curvature
Equationof Motion

4.1
4.2
4.3

Numerical Discretization

5 Hamilton-Jacobi Equations

5.1
5.2
5.3

Introduction .

Connection with Conservation Laws
Numerical Discretization
5.3.1 Lax-Friedrichs Schemes
5.3.2 The Roe-Fix Scheme
53.3 Godunov’sScheme

6 Motion in the Normal Direction

The Basic Equation
Numerical Discretization
Adding a Curvature-Dependent Term
Adding an External Velocity Field

6.1
6.2
6.3
6.4

7 Constructing Signed Distance Functions

7.1
7.2
7.3
74
7.5

Introduction .

Reinitialization
Crossing Times

The Reinitialization Equation
The Fast Marching Method

8 Extrapolation in the Normal Direction
One-Way Extrapolation.
Two-Way Extrapolation

8.1
8.2
8.3

Fast Marching Method

9 Particle Level Set Method
Eulerian Versus Lagrangian Representations
Using Particles to Preserve Characteristics

9.1
9.2

10 Codimension-Two Objects

Intersecting Two Level Set Functions
Modeling Curves in ®3
Open Curves and Surfaces
Geometric Optics in a Phase-Space-Based Level

10.1
10.2
10.3
10.4

Set Framework

29
31
33
37

41
41
44
45

47
47
48
49
30
52
54

55
55
57
59
59

63
63
64
65
65
69

75
75
76
76

79
79
82

87
87
87
90

0

Contents xi

IIT Image Processing and Computer Vision 95
11 Image Restoration 97
11.1 Introduction to PDE-Based Image Restoration 97
11.2 Total Variation-Based Image Restoration 99
11.3 Numerical Implementation of TV Restoration 103
12 Snakes, Active Contours, and Segmentation 119
12.1 Introduction and Classical Active Contours 119
12.2 Active Contours Without Edges 121
123 Results 124
124 Extensions L. 124
13 Reconstruction of Surfaces from Unorganized
Data Points 139
13.1 Introduction 139
13.2 TheBasicModel 140
13.3 The Convection Model 142
13.4 Numerical Implementation 142
IV Computational Physics 147
14 Hyperbolic Conservation Laws and
Compressible Flow 149
14.1 Hyperbolic Conservation Laws 149
14.1.1 Bulk Convection and Waves 150
14.1.2 Contact Discontinuities 151
14.1.3 Shock Waves 152
14.1.4 Rarefaction Waves 153
14.2 Discrete Conservation Form 154
14.3 ENO for Conservation Laws 155
14.3.1 Motivation L. 155
14.3.2 Constructing the Numerical Flux Function 157
14.3.3 ENO-Roe Discretization
(Third-Order Accurate) 158
14.3.4 ENO-LLF Discretization
(and the Entropy Fix) 159
14.4 Multiple Spatial Dimensions 160
14.5 Systems of Conservation Laws 160
14.5.1 The Eigensystem 161
14.5.2 Discretization 162
14.6 Compressible Flow Equations 163
14.6.1 Ideal Gas Equation of State 164
14.6.2 Eigensystem 164

14.6.3 Numerical Approach 165

xii Contents

15 Two-Phase Compressible Flow
151 Introduction,
15.2 Errors at Discontinuities
15.3 Rankine-Hugoniot Jump Conditions
15.4 Nonconservative Numerical Methods
15.5 Capturing Conservation
15.6 A Degree of Freedom
157 IsobaricFix
15.8 Ghost Fluid Method
15.9 A Robust Alternative Interpolation

16 Shocks, Detonations, and Deflagrations
16.1 Introduction
16.2 Computing the Velocity of the Discontinuity
16.3 Limitations of the Level Set Representation
164 Shock Waves,
16.5 Detonation Waves
16.6 Deflagration Waves
16.7 Multiple Spatial Dimensions

17 Solid-Fluid Coupling
17.1 Imtreduction Lo,
17.2 Lagrange Equations
17.3 Treating the Interface

18 Incompressible Flow
181 Equations
182 MACGrid,
18.3 Projection Method
184 Poisson Equation
18.5 Simulating Smoke for Computer Graphics

19 Free Surfaces
19.1 Description of the Model
19.2 Simulating Water for Computer Graphics

20 Liquid-Gas Interactions
201 Modeling oo
20.2 Treating the Interface

21 Two-Phase Incompressible Flow
21.1 Introduction
21.2 Jump Conditions,
213 Viscous Terms
21.4 Poisson Equation

S P Ny

167
167
168
169
171
172
172
173
175
183

189
189
190
191
191
193
195
196

201
201
203
204

209
209
210
212
213
214

217
217
218

223
223
224

Contents

22 Low-Speed Flames
22.1 Reacting Interfaces
22.2 Governing Equations
22.3 Treating the Jump Conditions

23 Heat Flow
23.1 Heat Equation
23.2 Irregular Domains
23.3 Poisson Equation L.
23.4 Stefan Problems

References

Index

xiii

239
239
240
241

249
249
250
251
254

259

271

Part I
Implicit Surfaces

In the next two chapters we introduce implicit surfaces and illustrate a
number of useful properties, focusing on those that will be of use to us
later in the text. A good general review can be found in [16]. In the first
chapter we discuss those properties that are true for a general implicit
representation. In the second chapter we introduce the notion of a signed
distance function with a Euclidean distance metric and a “1+” sign used to
indicate the inside and outside of the surface.

1

Implicit Functions

1.1 Points

In one spatial dimension, suppose we divide the real line into three distinct
pieces using the points £ = —1 and z = 1. That is, we define (—oo, —1),
(—1,1), and (1, 00) as three separate subdomains of interest, although we
regard the first and third as two disjoint pieces of the same region. We refer
to Q= = (—1,1) as the inside portion of the domain and Qt = (—o0, 1)U
(1,00) as the outside portion of the domain. The border between the inside
and the outside consists of the two points 82 = {-1,1} and is called
the interface. In one spatial dimension, the inside and outside regions are
one-dimensional objects, while the interface is less than one-dimensional.
In fact, the points making up the interface are zero-dimensional. More
generally, in R"™, subdomains are n-dimensional, while the interface has
dimension n — 1. We say that the interface has codimension one.

In an ezplicit interface representation one explicitly writes down the
points that belong to the interface as we did above when defining 8Q) =
{~1,1}. Alternatively, an ¢mplicit interface representation defines the inter-
face as the isocontour of some function. For example, the zero isocontour
of ¢(z) = 2% — 1 is the set of all points where ¢(z) = 0; i.e., it is ex-
actly 8Q = {~1,1}. This is shown in Figure 1.1. Note that the implicit
function ¢(z) is defined throughout the one-dimensional domain, while the
isocontour defining the interface is one dimension lower. More generally,
in 7, the implicit function ¢(&) is defined on all £ € R™, and its isocon-
tour has dimension n — 1. Initially, the implicit representation might seem

4 1. Implicit Functions

QF Q QF
9>0 00 9>0

outside / &gdj \ outside

0Q
¢=0 ¢=0

interface interface

Figure 1.1. Implicit function ¢(x) = 2° — 1 defining the regions O~ and QF as
well as the boundary 80

wasteful, since the implicit function ¢(&) is defined on all of R, while the
interface has only dimension n — 1. However, we will see that a number of
very powerful tools are readily available when we use this representation.

Above, we chose the ¢(x) = 0 isocontour to represent the lower-
dimensional interface, but there is nothing special about the zero
isocontour. For example, the d)(a:) 1 isocontour of ¢(z) = z2, defines
the same interface, 9 = {—1,1}. In general, for any function ¢(&) and
an arbitrary isocontour ¢(Z) = a for some scalar a € R, we can define
#(Z) = #(F) — a, so that the #(Z) = 0 isocontour of ¢ is identical to the
#(F) = a isocontour of ¢. In addition, the functions ¢ and ¢ have identical
properties up to a scalar translation a. Moreover, the partial derivatives
of ¢ are the same as the partial derivatives of q,’), since the scalar vanishes
upon differentiation. Thus, throughout the text all of our implicit functions
¢(&) will be defined so that the ¢(Z) = 0 isocontour represents the interface
(unless otherwise specified).

1.2 Curves

In two spatial dimensions, our lower-dimensional interface is a curve that
separates R? into separate subdomains with nonzero areas. Here we are
limiting our interface curves to those that are closed, so that they have
clearly defined interior and exterior regions. As an example, consider ¢(&) =

1.2. Curves 5

Q Q°
$<0 9>0

inside outside

-
e

p=x"+y'-1=0
interface

Figure 1.2. Implicit representation of the curve £ + 3% = 1.

z? + y? — 1, where the interface defined by the ¢(Z) = 0 isocontour is the
unit circle defined by dQ = {Z | |Z| = 1}. The interior region is the unit
open disk 2~ = {Z | || < 1}, and the exterior region is Q" = {Z | |Z| > 1}.
These regions are depicted in Figure 1.2. The explicit representation of this
interface is simply the unit circle defined by 9Q = {Z | |Z| = 1}.

In two spatial dimensions, the explicit interface definition needs to spec-
ify all the points on a curve. While in this case it is easy to do, it can be
somewhat more difficult for general curves. In general, one needs to param-
eterize the curve with a vector function Z(s), where the parameter s is in
[80, 87]- The condition that the curve be closed implies that (s,) = &(sf).

While it is convenient to use analytical descriptions as we have done
so far, complicated two-dimensional curves do not generally have such
simple representations. A convenient way of approximating an explicit
representation is to discretize the parameter s into a finite set of points
§o < +++ < 81 < 8; < 841 < -+ < 8y, where the subintervals [s;, ;1]
are not necessarily of equal size. For each point s; in parameter space,
we then store the corresponding two-dimensional location of the curve de-
noted by Z(s;). As the number of points in the discretized parameter space
is increased, so is the resolution (detail) of the two-dimensional curve.

The implicit representation can be stored with a discretization as well,
except now one needs to discretize all of R?, which is impractical, since it is
unbounded. Instead, we discretize a bounded subdomain D C R2. Within
this domain, we choose a finite set of points (z;,y;) fori =1,..., N to dis-
cretely approximate the implicit function ¢. This illustrates a drawback of
the implicit surface representation. Instead of resolving a one-dimensional

6 1. Implicit Functions

interval [s,, sf], one needs to resolve a two-dimensional region D. More
generally, in ", a discretization of an explicit representation needs to re-
solve only an (n — 1)-dimensional set, while a discretization of an implicit
representation needs to resolve an n-dimensional set. This can be avoided,
in part, by placing all the points T very close to the interface, leaving the
rest of D unresolved. Since only the ¢(£) = 0 isocontour is important, only
the points & near this isocontour are actually needed to accurately repre-
sent the interface. The rest of D is unimportant. Clustering points near the
interface is a local approach to discretizing implicit representations. (We
will give more details about local approaches later.) Once we have chosen
the set of points that make up our discretization, we store the values of the
implicit function ¢(Z) at each of these points.

Neither the explicit nor the implicit discretization tells us where the in-
terface is located. Instead, they both give information at sample locations.
In the explicit representation, we know the location of a finite set of points
on the curve, but do not know the location of the remaining infinite set
of points (on the curve). Usually, interpolation is used to approximate the
location of points not represented in the discretization. For example, piece-
wise polynomial interpolation can be used to determine the shape of the
interface between the data points. Splines are usually appropriate for this.
Similarly, in the implicit representation we know the values of the implicit
function ¢ at only a finite number of points and need to use interpolation
to find the values of ¢ elsewhere. Even worse, here we may not know the
location of any of the points on the interface, unless we have luckily cho-
sen data points £ where ¢(Z) is exactly equal to zero. In order to locate
the interface, the ¢(&) = 0 isocontour needs to be interpolated from the
known values of ¢ at the data points. This is a rather standard procedure
accomplished by a variety of contour plotting routines.

The set of data points where the implicit function ¢ is defined is called
a grid. There are many ways of choosing the points in a grid, and these
lead to a number of different types of grids, e.g., unstructured, adaptive,
curvilinear. By far, the most popular grids, are Cartesian grids defined as
{(zi,y;) | 1 <4 <m,1 < j < n}. The natural orderings of the z; and y;
are usually used for convenience. That is, £; < +++ < Tj_1 < T; < Tyy1 <

< zmand yp < -0 < Yi-1 < ¥j < Yjip1 < - < Yp.Ina uniform
Cartesian grid, all the subintervals [z;,z;;1] are equal in size, and we set
Az = ziy1 — x;. Likewise, all the subintervals [y;,y;+1] are equal in size,
and we set Ay = y;4+1 — y;. Furthermore, it is usually convenient to choose
Az = Ay so that the approximation errors are the same in the z-direction
as they are in the y-direction. By definition, Cartesian grids imply the use
of a rectangular domain D = [z1, Z,»] X [y1, ¥»). Again, since ¢ is important
only near the interface, a local approach would indicate that many of the
grid points are not needed, and the implicit representation can be optimized
by storing only a subset of a uniform Cartesian grid. The Cartesian grid
points that are not sufficiently near the interface can be discarded.

