DATA - ==
PROGESSING

LOGIC

DATA
PROCESSING
LOGIC

Laura Saret

Oakton Community College

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland Bogota Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi Panama
Paris Sao Paulo Singapore Sydney Tokyo Toronto

DATA PROCESSING LOGIC

Copyright © 1984 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

234567890 DOCDOC 8987654
ISBN 0-07-D54723-8

This book was set in Times Roman by University Graphics, Inc.
The editors were Eric M. Munson and Jonathan Palace;

the designer was Rafael Hernandez;

the production supervisor was Charles Hess.

The drawings were done by Danmark & Michaels, Inc.

R. R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging in Publication Data

Saret, Laura.
Data processing logic.

Includes index.
1. Electronic digital computers—Programming.
2. COBOL (Computer program language) 3. Flow charts.
L. Title.
QA76.6.5265 1984 001.6'1 83-24865
ISBN 0-07-054723-8

Preface

This book is one of the few available on structured data processing logic. The book
was developed from lecture notes and handouts which have been used successfully
in a course on data processing logic and programming techniques at Oakton Com-
munity College.

Although there are many books available on computer programming languages,
most do not teach students how to program. The available books concentrate on a
particular programming language, with a minimal amount of text being devoted to
problem solving. This book concentrates on problem solving, with little emphasis
placed on programming languages.

The approach of the book is to teach via examples. All the rules for programming
can be listed, but unless a student can see how to apply the rules, he or she will not
learn. There are 41 realistic business examples used in this book to illustrate the
various topics. Unlike other logic books, all examples are completely solved, so the
student can see the entire solution process. All examples in the book relate to business
problems. Data names used in this book are COBOL names, because they are more
“English-like” than the names allowed by other languages. All examples, however,
can easily be converted to FORTRAN or BASIC by changing names to adhere to
FORTRAN or BASIC rules.

The book is organized by topic. Chapters 1 to 4 should be covered in sequence.
After Chapter 4 is completed, however, the remaining chapters can be completed in
any order. After each chapter, exercises and logic problems are included for the stu-
dent to reinforce the concepts introduced in the chapter.

The author has found that there is sufficient material in this book for a 3-hour 1-
semester college course in programming logic. In addition, the book can be used:

1. As a supplement to a programming language course. Many programming stu-
dents and instructors have indicated that the examples in this book relate to the
types of problems assigned in a beginning programming class.

. As a high school course in the fundamentals of computer programming.

. In an industry course to train computer programmers.

4. In short courses for business and management people who desire an introduction

to computer programming and how a computer works.

5. For programmers in industry desiring to improve their programming skills using

structured techniques.

6. For the person desiring to purchase a computer for his or her business and who

is interested in learning how to describe the solutions to problems in a way that
makes them easy to program.

w N

This book assumes no previous knowledge of data processing. It is expected that
the reader can use simple arithmetic tools, but no previous formal training in
advanced mathematics is required.

Preface

With almost all books, there are people who contribute thoughts, constructive crit-
icism, time, energy, and emotional support to the author, and yet do not receive the
recognition they deserve because of space limitations. This book is no exception.
Nevertheless, I would like to thank Fran Perlman, a former student, who reviewed
the book as a favor to me; my other reviewers; McGraw-Hill for seeing this as a
worthwhile project and publishing the book; and my students at Oakton Community
College whose questions, comments, and academic successes and failures did much
to develop this book. Finally, I would like to thank my husband, Larry, my children,
Marla and Jeffrey, my sister, Sheri, and my parents, Marilyn and Harvey, who
always expressed substantial interest in the book and encouraged me to start and
finish it, probably so that they could see their names in this preface.

Laura Saret

To the Student

You will find this book useful whether you are a beginning data processing student,
a manager in a corporation, a data processing professional wishing to update your
skills and learn structured programming techniques, or a person curious about how
to get the computer to do what you want it to.

Learning programming logic is not easy. For many of you, this is your first expe-
rience in learning to “think like a computer.” You must unlearn the complicated
thought processes you have become used to in dealing with everyday life and learn
to tell the computer, in simplified terms, exactly what to do step by step.

The intent of this book is to teach you how to program without emphasizing any
programming language. You will find this book useful in any programming lan-
guage class you take, since writing a computer program merely involves translating
programming logic into a language that the computer can understand.

This book assumes no previous knowledge of data processing. It is assumed that
you can use simple arithmetic tools, but no training in advanced mathematics is
required. If you have had an introductory course or previous experience in data
processing, many of the concepts in the beginning of the book will be a review.

I hope that you will enjoy learning to program, and whether you end up as a data
processing professional, as a manager, or as a user of video games, word processors,
and other packaged programs, that you will appreciate the time, effort, and crea-
tivity involved in generating the logic of a computer program.

Laura Saret

Contents

PREFACE

TO THE STUDENT

CHAPTER 1

CHAPTER 2

CHAPTER 3

DATA PROCESSING TERMINOLOGY
Data Processing

Hardware

Data Organization

Software

The Programming Process

Arithmetic and Logic Symbols

Questions and Exercises for Review

INTRODUCTION TO PROGRAM FLOWCHARTS

Flowcharts (Definition)

Reasons for Flowcharting

Drawbacks of Flowcharting

Flowchart Symbols

Guidelines for Drawing Flowcharts

Example 2-1: Read, Move, Write, Input Areas, Output
Areas, and Work Areas

Example 2-2: Looping and Checking for End-of-File
(EOF)

Examples 2-3 and 2-4: Counters, Work Areas, and
Connectors

Example 2-5: Naming Fields in Storage

Example 2-6: Clearing Output Areas

Example 2-7: Implied Decimal Points, Arithmetic
Calculations, and Edited Output Areas

Example 2-8: Branching and Subroutines

Questions and Exercises for Review

STRUCTURED TECHNIQUES

Background

Reasons for Structuring

Disadvantage of Structured Programming

Rules for Structuring

Sequence Structure

Decision Structure

Looping Structure

Example 3-1: Structures, Literals, and Field Names
Example 3-2: Use of a READ Subroutine

xiii

OB BRWNN =

- 0 ® ® o~

-t

11

13

16
18
19

24
27
29

33
34
34
35
35
35
36
41
42
47

Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Pseudocode

Rules for Pseudocode

Hierarchy (Structure) Charts
Numbering Modules

Example 3-3: Review

Additional Tools for Logic Development
Questions and Exercises for Review

PROGRAMS WITH ONE INPUT FILE

Housekeeping (GET-READY) Functions

Termination (FINISH-UP) Functions

Example 4-1

Heading Lines, Detail Lines, and Total Lines

Example 4-2: No Input Data from Outside of Program,
Heading Lines, and External Subroutines

Example 4-3: Control Codes

Example 4-4: Control Breaks

Example 4-5: Multiple Input Records Required to
Produce One Output Record, Using the Current Date
on a Report

Questions and Exercises for Review

PROGRAMS THAT INCLUDE TOTALS

Example 5-1: Single-Level Totals

Example 5-2: Single-Level Totals with Control Breaks
Example 5-3: Multiple-Level Totals

Example 5-4: Multiple-Level Totals

Questions and Exercises for Review

EDIT PROGRAMS AND MULTIPLE OUTPUT
FILES

Background

Example 6-1

Example 6-2: Multiple Output Files

Questions and Exercises for Review

EXTRACT PROGRAMS AND SORTS

Background

Example 7-1: Selection Based on One Criteria

Example 7-2: Selection Based on Multiple Criteria (AND
Comparisons)

Example 7-3: Selection Based on Multiple Criteria (OR
Comparisons)

Example 7-4: Select Based on Multiple Criteria (AND
and OR Comparisons)

Summary

48
50
51
52
52
54
62

67
68
68
69
70

73
79
81

88
100

109
110
113
120
121
137

141
142
143
146
168

163
164
164
166
169

172
172

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

Contents

Sorts 176
Example 7-5: Extract Program with an Embedded Sort 178
Questions and Exercises for Review 187
DATE RECORDS, PARAMETER RECORDS, AND
INTERACTIVE PROGRAMS 191
Date Records 192
Example 8-1: Date Record Included as First Record of

Input File 192
Parameter Records 195
Example 8-2: Parameter Record Included as a

Separate File 196
Interactive Processing 198
Example 8-3: Use of an Interactive Program to Create a

Parameter File 198
Questions and Exercises for Review 198
USING TABLES 205
Background 206
Example 9-1: Table vs. Nontable Processing 206
Example 9-2: Two-Dimensional Tables 210
Example 9-3: Replacing Two-Dimensional Tables

with One-Dimensional Tables 220
Example 9-4: Two-Dimensional Tables and Table Values

Input from Outside of Program 222
Compile vs. Execution-Time Tables 236
Table Organization and Sequential and Binary Search 236
Table Restrictions 236
Questions and Exercises for Review 237
PROGRAMS WITH MULTIPLE INPUT FILES—
SEQUENTIAL FILE MATCHING AND UPDATING 241
Sequential Files 242
Master and Transaction Files 242
Example 10-1: Sequential File Matching 243
Example 10-2: Sequential File Matching with Multiple

Output Files 251
Example 10-3: Multiple Transaction Records per Master

File Record 255
Sequential File Update 256
Example 10-4: Sequential File Update 259
Questions and Exercises for Review 270
NONSEQUENTIAL PROCESSING 281
Background 282
Direct File Organization and Processing 282

Contents

INDEX

Indexed File Organization and Processing

Example 11-1: Creating an Indexed Sequential File

Example 11-2: Processing an Indexed Sequential File
Sequentially

Example 11-3: Updating an Indexed Sequential File

Questions and Exercises for Review

283
284

289
291
308

315

ing

inology

Data Process
Term

Chapter 1

DATA PROCESSING

Data processing involves taking raw data as input to a system, processing the data,
and producing information as output.

Input data — process data — output information

The basic requirements, therefore, of any data processing system (computerized or
not computerized) are input, processing, and output. Consider, as an example, a sys-
tem used to compute student grades at the end of a semester. Input consists of exam
and assignment scores for each student in a class. The scores for each student are
processed to compute his or her average and grade. Output will consist of a grade

for each student.

Input exam and process scores to
assignment scores — compute average — output grades
and grade
HARDWARE

A computer is a machine used for data processing. It is a system of devices capable
of processing data which has been entered and supplying the resulting information
as output. As such, a computer system must consist of input devices, output devices,
and a processing device. These devices are referred to as hardware. The processing
device used by the computer is called the central processing unit (CPU). The CPU is
what is usually thought of when you hear the term “computer.” It consists of a con-
trol unit, an arithmetic logic unit (ALU), and a storage unit.

CPU

Control unit ALU

Storage

The control unit can be thought of as the “brain” of the computer. Among other
things, it determines which program instruction to execute, interprets the instruction,
and causes the instruction to be executed. The arithmetic logic unit is responsible for
doing arithmetic computations (for example, ADD A TO B), data transfers (moving
data from one area of storage to another), and logical comparisons (such as ISA =
37) as directed by the control unit. The storage unit contained within the CPU is
referred to as primary or main storage. It is used to store the data and instructions
(programs) needed by the computer. Another term used for storage is memory. The
memory size of a computer refers to the storage capacity of the CPU.

Because of space and cost constraints, main memory is not the only storage used

Data Processing Terminology

by a computer. Imagine the size of the CPU that would be needed if the Internal
Revenue Service, for example, stored all its programs and data in main memory!
Secondary or external storage media are used as additional storage or memory for
the computer. However, in order for the CPU to use data or instructions, they must
be in main memory. The computer can’t process data or use instructions that are on
a secondary storage medium.

Examples of secondary storage media include punched cards, magnetic disks, and
magnetic tapes. Input/output (1/0) devices are hardware used to get data and instruc-
tions from secondary to primary storage and vice versa. I/O devices include such
things as card readers, magnetic tape drives, magnetic disk drives, and printers.

DATA ORGANIZATION

Data are organized as files in secondary storage. A file consists of a group of related
records. Examples of files include payroll files, student files, and accounts receivable
files. A payroll file, for example, will probably have a record for each employee of
the company. A student file may have a record for each student in the school. Rec-
ords are composed of fields. A field is a group of consecutive storage positions
reserved for a specific type of data, e.g., name, address, or social security number.
Fields are composed of characters. In the name field which contains the name
JONES, there are five characters: J, O, N, E, and S.

Fields are said to be alphabetic, numeric, or alphanumeric (alphameric), depend-
ing on the characters stored in the field. An alphabetic field can contain the char-
acters A through Z, and spaces or blanks. A numeric field can contain the characters
0 through 9, a decimal point (.), and an optional sign (+ or —). An alphanumeric
Jfield can contain alphabetic characters, numeric characters, and special characters
such as a dollar sign ($), comma (,), quote (*“), apostrophe (’), percent sign (%),
hyphen (-), etc.

Consider again the earlier example of computing students’ grades. Suppose we
keep track of the scores on an index card file. We will have an index card (record)
for each student (see sample below). The fields in the record include student name,
social security number, Exam 1 score, Exam 2 score, Exam 3 score, Assignment 1
score, and Assignment 2 score.

Student name: Susan Smith
Soc. Sec. No.: 325-84-1722

Exam 1 score: 56 Assignment 1 score: 10
Exam 2 score: 73 Assignment 2 score: 21
Exam 3 score: 21

The student name consists of letters and a blank between the first and last name. It
is an alphabetic field. The social security number contains numbers and hyphens,
and is therefore an alphanumeric field. Each of the “score” fields is numeric.

Chapter 1

SOFTWARE

Software is the term used to describe computer programs. A computer program is a
set of instructions written in a specific sequence to direct the computer to perform
certain predetermined tasks. In the student grade example, we can write instructions
that cause the computer to input a record for a particular student, compute the grade
based on the contents of the exam and assignment score fields, and print (output)
the student’s name and his or her grade. Then we can write an instruction to have
the computer process the next record and continue doing so until we run out of

records.

THE PROGRAMMING PROCESS

In general, the systems analyst working on a particular project will provide program
specifications to be used by the programmer. The specifications will include such
things as a statement of the problem, a description of all inputs and outputs, and
details of the processing that is to take place. The programmer can then write a
program which will meet the specifications.

There are seven steps in the programming process:

1. Understand the program specifications. Before doing anything else, the pro-
grammer needs to become familiar with what the program is trying to accom-
plish and with the input and output files designed by the systems analyst.

2. Plan the program logic. Suppose you are going to drive from Chicago to New
York on a trip. Most people would not just get into the car and start driving;
they would plan an itinerary, figure out what to pack, phone ahead for reser-
vations, etc. In much the same way, a programmer should not begin by coding.
During the planning step, a programmer decides how best to meet the program
specifications set forth by the analyst. The programmer usually divides the pro-
gram into modules or subroutines and uses design techniques, such as flow-
charts, pseudocode, and hierarchy charts, to help plan the solution.

A subroutine or module is a set of instructions that will accomplish a specific
function of the program, e.g., printing headings, doing totals, accessing a table,
etc. The subroutine takes data from the main (calling) routine or program, exe-
cutes the instructions of the subroutine, and sends the results back to the main
program. The advantages of using subroutines include the following:

a. A decrease in the cost and time of testing and modifying programs, because
the programmer can test or change a subroutine without affecting the logic
of the rest of the program.

b. A programmer can write a standardized routine which can then be used in
other programs. This reduces programming cost by eliminating the need to
write duplicate code in every program.

c. Several programmers are able to work on the same program simultaneously
since each may be assigned a separate module to write.

3. Code the program. After the solution is planned, the next step is to code the
solution in a programming language such as ASSEMBLER, COBOL, or FOR-

Data Processing Terminology

TRAN. Coding involves translating the solution into a language that the com-
puter can understand. The coded program is called the source program.

. Get the program into machine readable form. This is done by punching the

program onto cards, entering it via a computer terminal, or using a key-to-tape
or key-to-disk machine.

. Compile or assemble the program. Computers cannot execute source programs.

They work electronically and, therefore, must represent data and instructions
in binary (on-off) form. Compilation or assembly involves the conversion of the
source program to an object or machine language (binary) program. The con-
version is done by a program called a compiler in the case of a high-level lan-
guage such as COBOL or an assembler in the case of an assembly language
program. The input to the compiler or the assembler is the source program.
Outputs from the compiler or the assembler include the object program and a
list of diagnostics (errors). The errors listed are syntax (or “language”) errors.
Examples of syntax errors include the use of a variable name that contains too
many characters, writing GO TO STEP-10 when the programmer used the
name STEP10 without a hyphen when labeling the instruction, and violating
punctuation rules of a language. Logic errors are not listed during compilation.
An example of a logic error is using an ADD instruction instead of a SUB-
TRACT instruction in a COBOL program. Even though both instructions are
valid, very different results will be obtained during program execution. Logic
errors can only be detected by testing the program.

. Test the program. Once all the syntax (language) errors have been corrected,

it is time to test the logic of the program. This involves using sample data as
input, executing the program, and checking the results.

- Document the program. Documentation is listed as the last step in the program-

ming process, but documentation, i.e., providing a written commentary of steps
1 to 6, should be done as the steps are done. Some of the things to include in
documentation are the specifications provided by the analyst, flowcharts and
other planning aids, program listings, sample test data, and test results.

This book concentrates on the planning step. Program flowcharts, hierarchy charts,
and pseudocode will be used to aid in the development of program logic.

ARITHMETIC AND LOGIC SYMBOLS

The following arithmetic and logic symbols will be used in this book:

Symbol Meaning Example

= Equals A = B means 4 is equal to B.

< Less than A < B means 4 is less than B.

> Greater than A > B means A is greater than B.

= Less than or equal to A = B means A is less than or equal to B.

= Greater than or equal to 4 = B means A is greater than or equal to B.
* Not equal A # B means A is not equal to B.

Chapter 1

Symbol Meaning Example

: Compare A : B means compare the value of A4 to the
value of B.

+ Addition A + B means add A4 and B.

- Subtraction A — B means subtract B from A.

* Multiplication A * B means multiply 4 and B.

/ Division A/ B means divide 4 by B.

*k Exponentiation A ** B means A to the B power.

QUESTIONS AND EXERCISES FOR REVIEW

1. Define the following terms:
Alphabetic field

a. Data processing k.

b. Computer 1. Numeric field

c. Hardware m. Alphanumeric field
d. Primary storage n. Software

e. Memory 0. Computer program
f. Secondary storage p. Subroutine

g. File q. Source program

h. Record r. Object program

i. Field s. Compiler

j- Character t. Documentation

What are the basic requirements of any data processing system?

What are the three parts of the CPU? Describe the function of each.

What are 1/0 devices?

Describe the relationship between files, records, fields, and characters. Give an
example to illustrate.

What are the steps of the programming process? Describe each.

What is the difference between a logic error and a syntax error?

How does a source program become an object program?

How would you express each of the following using arithmetic and logic
symbols?

. Sisequalto C

. 7 is not equal to 12

Add 3 and 6

4 is less than 11

A is less than or equal to 15
Subtract 11 from 23

SR

AR Ba i

. Raise 5 to the power of 2

. Divide 87 by 3

. Compare D to 6

Multiply 4 and 15

X is greater than or equal to 12
15 is greater than 3

-0 Qo0 o
— A e e TR

Introduction to Program
lowcharts

