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PREFACE TO THE SECOND EDITION

THE first edition of this book was an attempt to give an
introduction to the basic ma,thematlcs needed in physics and
engineering. Only a knowledge of the principles of statics and
dynamics and of the calculus was assumed ; other techniques
were developed ab inilio, but as rigorously as. possible, and an
attempt was made to develop mathematical skill through the
solution of a large number of problems of technical significance.
To thls end in addition to conventional statxqs and dynamics,
the book covéred much of what is now described as ‘mathe-
matical methods’, including vector analysis, numerical analysis,
ordinary and partial differential equations, special functions,
Fourier series, and Fourier and Laplace Transforms. In dynamics
. it included a long chapter on mechanical vibrations and ‘another
~ on electric circuit theory. Boundary value problems were intro-
duced through the theory of bending of beams.

This new edition has been prepared largely by Professor
Starfield. It has been found that most of the old material is still
needed. In some places the examples have been modernized,
for example solid-state devices replace vacuum tubes. Other
areas have been extended; for instance servomechanisms are
discussed in terms of the transfer function, and the applications
of Fourier transforms have been widened to include ideas in
communication theory. Also, over the last few years, the appli-
cation of mathematics to biological and economic probléms has
greatly increased, and discussion and examples relating to both
of these topics have been added.

The great change over the past two decades has been the
development of computer techniques which have not only
enormously widened the range of problems which can be solved,
but have changed habits of thought in the formulation of
probiems and demanded new approachesin their solution. The
emphasis has to some extent changed from problems leading to

differential equations to those.involving difference equations or

an algorithmic approach. Moreover, the numerical solution of

.
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differential equations involves their expression in terms of
difference equations and creates a new concern with questions
of accuracy and the stability of solution. In more complicated
cases, such as systems of equations and the numerica} solution
of partial differential equations, matrices have become an
essential computing tool. ’ B
To cope with these changes two new chapters have been
added ; one on difference equations and the numerical solution
of differential equations, and the other on matrices. The last
two chapters on partial differential equations have also been
rewritten and extended and a number of examples have been
added for numerical solution on a computer. -
J. C. J.
A M S
Tasmania
University of the Witwatersrand, South Africa
May 1973 ‘
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I

- MATHEMATICAL MODELS AND
DIFFERENTIAL AND DIFFERENCE
EQUATIONS

1. Introductory ,
THERE are three essential steps in the solution of a problem in
applied mathematics. In the first step, the problem is stated in
mathematical terms. This means that the relevant variables
are identified and that mathematical relationships are estab-
lished between them, either by using physical laws or empirical
evidence, or by hypothesis. The second step consists of the
solution of the mathematical relationships, either by standard
mathematical techniques, or, if these prove intractable, by
numerical methods with the aid of & computer. Finally, in the
third step, the solution is expressed in a form which enables one
to interpret it and draw physical conclusions from it.’

Most of the problems with which we shall be concerned will
lead to mathematical relationships involving either differential,
or, occasionally, difference equations. The subsequent chapters
of this book are thereforelargely concerned with the solution and
applications of these equations. In this chapter we shall use
simple examples to show how differential and difference equa-
tions arise, and will lay the groundwork for both the. mathe-
matical and numerical methods of solving them.

2. Mathematical models 7

To illustrate the first step in the solution procedure, that is,

the development of a mathematical model, we discuss the
“problem of predicting the growth of a population.

In the simplest case, this problem involves only two variables;
the independent variable is the time ¢, and the dependent
variable is the size of the population z. The mathematical
relationship between z and ¢ is then determined by the specific
conditions relating to the population we are studying. For a
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large but uncrowded human population, with an unlimited food
supply, we could argue that both the birth-rate and mortality
rate at any time are proportional to the size of the population

t that time, - .
b that time birth-rate = bz

and mortality rate = cz,

where b and ¢ are constants. The rate of increase of the popula-
tion is then
dx

T bx—cz, (1)

which is an ordinary differential equation.

Alternatively, if we consider an insect population where one
generation dies out before the next generation hatches, it is
unsatisfactory to think of the population as a continuous function
of time. We therefore introduce the notation z,,z,, zs,..., etc.,
for the size of generation 1,2,3,...,etc., and postulate that the
increase in population from generation r to generation r-41
should be directly proportional to the size of the rth generation,

C Xy — T, = kx,, (2)

where kis a constant. Thisis an example of a difference equation.t

Both the previous models are deterministic in the sense that
statistical fluctuations are ignored. If the population under
study is sufficiently large, it is reasonable to assume that chance
effects can be neglected.” This is not true of small populations,
where one must develop a probabilistic or stochastic model which
includes an element of chance.

To take an extreme example, suppose that we start with a
single cell at time ¢ = 0, and that we wish to predict its subse-
quent division and subdivision. Suppose further that empirical
evidence indicates that there is a probability ¢ that the cell
will divide in time 7'. We then cannot say how many cells we will
have at time T'; only that there is a probability ¢ that we will

+ Ex. 4 of § 112 illustrates some of the differences between a continuous

(differential equation) and discrete (difference equation) formulation of the
same problem.
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have two cells and a probability 1—¢ that we will still have one
cell. If we introduce the notation p,, , to denote the probability
that we will have precisely m cells at.time n 7', then

pl,o = ]'1 p,-,o =0 fol' r > 2}. (3)

Pia=1—q, Pogy=¢5 Ppy=0 forr=>3

Using the theory of probability, we can then argue that at
time 27
Pra = (1—-9P Pag= g1—q)(2—q), Pss = 29*(1—9),
Pa2 = qav D2 = 0 for r > 5,

and so on. For example the argument leading to py, is that there
can only be four cells at time 27" if the first cell divides at time 7'
and both halves subsequently divide again. The probability of
the former is g, of the latter ¢2, and so the probability of both
events occurring is ¢3. ) '
The probability distribution p,,, at each time nT gives a full
statistical picture of the process of cell division. To compare this
with a deterministic model, we calculate the average size or
expected value of the population at nT. This is defined as

0

Dp = E MPm,ns (4)
m=1

and it can be shown that, in this example,

. Prv1 = (1+9)Pn-. - (5)
Comparing (2) and (5) we see that, for this particular example»
the deterministic model describes the average behaviour of the
stochastic model.

Deterministic models will be perfectly adequate for most of
the problems that we shall study. It is, however, important to
bear in mind that some problems (see, for example, § 113 Ex. 1,
and Ex. 6 at the end of Chapter XIV) can properly be described
only by a stochastic model.

3. Solution and interpretation of results
The second step in the solution of a problem involves the
‘actual solution of the mathematical model. In the example of



4. MATHEMATICAL MODELS AND DIFFERENTIAL ocm. 1

the previous section, both the differential equation § 2 (1) and
the difference equation § 2 (2) can be solved by the methods of
Chapters I1I and XIV. The solution to the differential equation

is £(t) = Aeb—%, (1)

where A4 is the size of the population at ¢ = 0 ,while the solution
to the difference equation is

z, = z,(1+ k)1, (2)

which expresses subsequent genera.tlons in terms of the size of
the first generation z;.

We will not attempt to find the general form of the prob-
abilities p,, , of § 2(3). However, we notice that there is a definite
argument which enables one to proceed from the probabilities
at time 2T to those at time (n+1)T, and this argument could
be developed into a computer program which would calculate
and print out tables of p,, ,, for different values of g.

Similarly, if we did not know how to solve the difference
equation § 2 (2), we notice that writing it in the form

Tpyy = (1+k)z, (3)
suggests a direct n\method of calculating z, from z,, z; from x4, and
8o on, for a given value of k. Thissimple correspondence between
difference equations and computer routines is one of the reasons
why difference equations are important. In fact, in & more
realistic model of population growth, k in (3) might well not be a
constant but rather a complicated function of r and z,, depending
on environmeéntal and other effects. It is then unlikely that a
mathematical solution of (3) could be found, and the only way
to solve the problem is to compute x,, 23,... etc., step by step.

The final step in the solution of a problem is the interpretation
of the results. Apart from presenting the results as graphs or
tables for various values of the constants, it is possible to draw
some definite conclusions from solutions such as (1) and (2).
For example, from (1) we see that the population will increase
with time if b > ¢ (which we could have concluded from the
differential equation § 2 (1) without even solving it). A less
trivial result is that, if b > ¢, the population will double in a
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time period (In 2)/(b—c)} and will double again in a similar time
period. In the case of the discrete model (2), the population
doubles every 1+ {In 2/In (1-+k)} generations.

The preceding discussion indicates the importance of differen-
tial equations, difference equations, and computer methods in
the solution of problems. In the next two sections we shall intro-
duce the terminology of differential and difference equations,
and discuss computer methods in greater detail.

4. Differential equations and difference equations. Defini-
tions

Any relation between the independent} variable , the depen-
dent variable y, and its successive derivatives dy/dz, d%y/dz3,..., 18
called an ordinary§ differential equation. The order of a differen-
tial equation is the order of the highest differential coefficient
occurring in it. Thus, for example,

dz”+xy— 1, M
3:3; (dx) +y=0, (@
| and (:;) +y(gi) +y=0, 3

are all second-order differential equations.

All the differential equations we shall need will contain only
" rational integral algebraic functions of the differential coefficients
(fractional powers of 2 and y may sometimes occur), and in such
cases the degree of the highest differential coefficient is called the
degree of the equation. Thus (1) and (2) are both of the second
order and the first degree, while (3) is of the second order and
‘second degree. ‘

t The notation In z for log, z will alwa.ys be used.

1 When discussing the theory of differential equations we shall take the
independent variable to be z and the dependent variable y. In applications
the symbols are determined by the problems. It is assumed throughout that y
has derivatives of all the orders involved for all values of z.

§ If there are two or more independent variables, the equation is a partial
differential ei;ua.tion; these will be discussed in Chapter XV. Until then the
word ‘ordinary’ will usually be omitted.
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By far the most important type of differential equation with
which we shall be concerned is that in which all terms are of at
most the first degree in y and its derivatives. This is called an
ordinary linear differential equation, and its general form for
the nth order is

dry '
0@ P+ (D) T Y A i@ D,y = $o). ()

The quantities ay(x), @,(2),..., a,(x) are called the coefficients; if
these are all constants, the equation is referred to as an ordinary
linear differential equation with constant coefficients, otherwise
it is a differential equation with variable coefficients.

Equation (4) is called an inhomogeneous equation to distin-
guish it from the corresponding equation with ¢(z) = 0,

dn dr-1
ay(@) T2 + @) T
which is called a homogeneous equation.t

Equations (4) and (5) have fundamental properties which
distinguish them from all other types of differential equations.
Considering the homogeneous equation (5) first, suppose that
¥, and y, are two different solutions of it, so that

+. +%q()Z+aA@y=0, (5)

ao(a:) +“1(x) d Py 1 I tay @)y, = 0 (6)

ad a0 Pl ta@T Y @ =0 ()

If ¢, and c, are constants, it follows, by adding ¢, times (6) to ¢,
times (7), that c, y,+c, ¥y, also satisfies (5). That is, if we know
two solutions of (5), any linear comkination of these is also a
solution. Similarly, if y,,¥,,..., ¥, are n d1ﬁ'erent solutions of (5),
the general linear combmatlon

01?11+°z3/2+""+cnyns
where c,,c,,...,c, are any constants, is also a solution. This
result does not hold for the inhomogeneous equation (4).

# The ‘term ‘homogeneous’ is also used in a different context for certain
special types of differential equations; cf. § 25. These are not of much impor-
tance in applied mathematics and no confusion is likely to arise.
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The important result for the inhomogeneous linear equation
(4) is that if y, is a solution of it with a function ¢,(z) on the
right-hand side, and y, a solution with ¢,(x) on the right-hand
side, and 8o on, then y = y,+y,+...+y, satisfies (4) with
é(x) = ¢,(x)+Pu(x)+...+¢,(x) on the right-hand side. This
can be confirmed by adding the equations of type (4) for ¥, to
Yn- In many applications we will find that ¢(z) refers to the
cause and y describes the eéffect. The above result thus implies
that, if the equations governing the problem are linear, the effects
of a number of superposed causes can be added. This is known as
the Principle of Superposition.

Exactly the same terminology and results apply to difference
equations. Any relation between the terms y,,%,.1,--s ¥psn Of
a sequence is called a difference equation of order n. The linear
difference equation of order = is

0 yr+n+'a1 yr+n—1+ o +an—1 yr+1+an Y = ¢(7): (8)
and if the coefficients a,,a,,...,a, are independent of » we call
(8) a linear difference equation with constant coefficients. If
é(r) = 0, (8) is homogeneous, otherwise it is inhomogeneous. It
can eagily be shown that the general linear combination of n
different solutions of the linear homogeneous equation is also a
solution of the homogeneous equation, and that the Principle
of Superposmon holds for linear inhomogeneous difference
equa,tlons

However, neither of these results hold for non-linear differen-
tial or difference equations. For example, ify, and y, both satisfy
Zx—zy‘é +y Z’% +y =0, (9)
neither ¢, y,-+¢, y, O even ¢, y, satisfies (9) because of the non-
linear term ydy/dx.

The distincticn between linear and non-linear differential or
-difference equations is of fundamental importance. Broadly
speaking, it will become apparent that, for both differential and
difference equations, the sclution of linear equations with con-
stant coefficients is relatively straightforward; linear equations
with variable coefficients are more difficult to solve, but special



