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Preface

Biophysical Chemistry is concerned with biological macromolecules and complexes
or arrays of macromolecules. The work deals with the conformation, shape, structure,
conformational changes, dynamics, and interactions of such systems. Our goal is to
convey the major principles and concepts that are at the heart of the field. These
principles and concepts are drawn from physics, chemistry, and biology.

We have aimed-at creating a multilevel textbook in three separately bound parts.
The material covers a broad range of sophistication so that the text can be used in
both undergraduate and graduate courses. It also should be of value to general
scientific readers who simply wish to become familiar with the field, as well as to
experienced research scientists in the biophysical area. For example, perhaps half of
the material requires only the background provided by a one-semester undergraduate
course in physical chemistry. A somewhat smaller fraction necessitates the use of
concepts and mathematical techniques generally associated with a more sophisticated
background, such as elementary statistical thermodynamics and quantum mechanics.

_ Biophysical Chemistry is organized into three parts. The first part deals with the
structure of biological macromolecules and the forces that determine this structure.
Chapter 1 introduces the fundamental questions of interest to biophysical chemists,
Chapters 2—4 summarize the known structures of proteins, nucleic acids, and other
biopolymers, and Chapters 5—6 treat noncovalent forces and conformational analysis.

Part II summarizes some of the techniques used in studying biological structure
and function. The emphasis is on a detailed discussion of a few techniques rather
than an attempt to describe every known technique. Chapters 7-9 cover spectroscopic
methods, Chapters 10~12 deal with hydrodynamic methods, and Chapters 13-14
discuss x-ray and other scattering and diffraction techniques.

Part I1I demonstrates how techniques and principles are used in concert to gain
an understanding of the behavior and properties of biological macromolecules. The
focus is on the thermodynamics and kinetics of conformational changes and ligand
interactions. New techniques are introduced as needed, and a few selected case
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PREFACE

histories or systems are discussed in considerable detail. The topics include ligand
interactions (Chapters-15-17), the special theories and techniques used to study
molecules that are statistical chains rather than definite folded conformations
(Chapters 18-19), protein conformational changes (Chapters 20-21), nucleic acid
conformational changes (Chapters 22—-24), and membranes (Chapter 25).

We have made every effort to keep the chapters as independent as possible, so
that the reader has a wide choice of both the material to be covered and the order in
which it is to be treated. Extensive cross-references to various chapters are included
to help the reader find necessary background material if the parts are not read in
sequence. Where possible, examples are taken repeatedly from a small number of
systems, so that the reader can have the experience of contrasting information gained
about the same protein or nucleic acid from a variety of different approaches.

_ Within each chapter, we have attempted to maintain a uniform level of rigor or
sophistication. Short digressions from this level are segregated into boxes; longer
digressions are indicated by a bullet (s) preceding the section or subsection heading.
Readers with a less rigorous background in physics, mathematics, and physical
chemistry should find helpful the many boxes that review elementary material and
make the text fairly self-contained; Appendix A provides a basic review of principles
of matrix algebra. Other boxes and special subsections are aimed at advanced
readers; in many cases, these discussions attempt to illuminate points that we our-
selves found confusing.

In different sections, the level of mathematical sophistication varies quite signifi-
cantly. We have tried to use the simplest mathematical formulation that permits a
clear presentation of each subject. For example, hydrodynamic properties are treated
in one dimension only. The form of a number of the fundamental equations is extracted
by dimensional analysis rather than through lengthy (and not particularly instructive)
solutions of hydrodynamic boundary-value problems. On the other hand, x-ray and
other scattering phenomena are treated by Fourier transforms, and many problems
in statistical mechanics are treated with matrix methods. These advanced mathe-
matical techniques are used in only a few chapters, and numerous boxes are provided
to assist the reader with no previous exposure to such methods. The remaining
sections and chapters are self-contained and can be understood completely without
this advanced mathematical formalism.

Some techniques and systems are not covered in any fair detail. This represents
a biased choice by the authors, not necessarily of which techniques we feel are im-
portant, but simply of which are instructive for the beginning student in this field.

Each chapter concludes with a summary of the major ideas covered. In addition,
each chapter is heavily illustrated, including some special drawings by Irving Geis.
Certainly, much can be learned simply by reading the chapter summaries and by
studying the illustrations. Also, we believe the illustrations convey some of the excite-
ment of the field. ‘

Problems are provided at the end of each chapter. These vary in difficulty from
relatively simple to a few where the full answer is not known, at least to the authors.
Answers to problems are provided in Appendix B.
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Detailed literature citations are not included, except to acknowledge the source
of published material reproduced or adapted here. However, a list of critical references
for each chapter is included. In virtually all cases, these articles will provide an
immediate entrée to the original papers needed for more detailed study.

The problem of notation and abbreviations in this field is a difficult one. In
drawing together material from so many different types of research, we have had to
adapt the notation to achieve consistency and to avoid confusion among similar
symbols. Wherever possible, we have followed the recommendations of the American
Chemical Society, but inevitably we have had to develop some conventions of our
own. A glossary of some of the more frequently used symbols is provided.

At MIT some of this material has been used in an undergraduate course in
biophysical chemistry. The course was designed to meet the needs of students wishing
a second course in physical chemistry, but developed in a biochemical framework.
The idea was to construct a course that covered much of the same material with the
same rigor as a parallel, more traditional course. The only preparation required was
a one-semester course in undergraduate physical chemistry, which at MIT is largely
concerned with chemical thermodynamics.

Over the years graduate courses in biophysical chemistry at MIT and at
Columbia have made use of much of the material presented here. In addition, a special-
topics course in protein structure has used some of the material. Because a broad range
of subjects is covered, its usefulness as a text will hopefully meet a variety of individual
teaching tastes and preferences, as well as enable instructors to vary content as needs
develop and change.

It is obvious that a work of this complexity cannot represent solely the efforts
of its two authors. As we sought to master and explain the wide range of topics
represented in biophysical chemistry, we learned why so few books have been written
in this field in the past two decades. We owe a great debt to many who helped us in
ways ranging from sharing their understanding to providing original research data.

We give special thanks to Irving Geis, for his effort on a number of complex
illustrations and for his helpful advice on numerous other drawings; to Wilma Olson,
for reading a major portion of the entire manuscript; to Robert Alberty and Gordon
Hammes, for their influence, through teaching and discussions, on the material on
biochemical equilibria and kinetics; to Richard Dickerson, for providing material
and advice that were essential for the preparation of Chapter 13; to Paul Flory, for
inspiring our treatment of conformational energies and configurational statistics of
macromolecules; to Howard Schachman, whose course at Berkeley inspired parts of
several chapters; to R. Wayne Oler, for bringing the authors together for this under-
taking, and to Bruce Armbruster, for sealing the commitment; to the helpful people
at W. H. Freeman and Company, including Ruth Allen, Arthur Bartlett, Robert Ishi,
Larry McCombs, and Pearl Vapnek; to Kim Engel, Karen Haynes, Marie Ludwig,
Joanne Meshna, Peggy Nelson, Cathy Putland, and Judy Schimmel, for typing and
related work associated with the manuscript; and to Cassandra Smith and to Judy,
Kathy, and Kirsten Schimmel, for their patience with the intrusion this work has
made on the authors’ lives.
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Many people read and commented on specific chapters, provided figures, notes
and materials, and spent much time with us in helpful discussions. We gratefully
thank these people: Robert Alberty, Arthur Arnone, Struther Arnott, P. W. Atkins,
Robert Baldwin, Larry Berliner, Bruce Berne, Richard Bersohn, Sherman Beychok,
Victor Bloomfield, David Brandt, John Brandts, John Chambers, Sunney Chan,
Patricia Cole, Robert Crichton, Francis Crick, Donald Crothers, Norman Davidson,
Richard Dickerson, David Eisenberg, Robert Fairclough, Gerry Fasman, George
Flynn, David Freifeider, Ronald Gamble, Robert Gennis, Murray Goodman,
Jonathan Greer, O. Hayes Griffith, Gordon Hammes, John Hearst, Ellen Henderson,
James Hildebrandt, Wray Huestis, Sung Hou Kim, Aaron Klug, Nelson Leonard,
H. J. Li, Stephen Lippard, Richard Lord, Brian Matthews, Harden McConnell,
Peter Moore, Garth Nicolson, Leonard Peller, Richard Perham, Michael Raftery,
Alexander Rich, Frederick Richards, David Richardson, Wolfram Saenger, Howard
Schachman, Harold Scheraga, Benno Schoenborn, Verne Schumaker, Nadrian See-
man, Robert Shulman, Mavis Shure, Louise Slade, Cassandra Smith, Hank Sobell,
Thomas Steitz, Robert Stroud, Lubert Stryer, Serge Timasheff, Ignacio Tinoco, Jr.,
Richard Vandlen, Jerome Vinograd, Peter von Hippel, Christopher Walsh, James
Wang, Gregorio Weber, Peter Wellauer, Barbara Wells, Robert Wells, William
Winter, Harold Wyckoff, Jeffries Wyman, and Bruno Zimm.

November 1979 Charles R. Cantor
Paul R. Schimmel



Glossary of symbols

This glossary includes some of the symbols used extensively throughout
the text. In many cases, the same or very similar symbols are used in
certain contexts with other meanings; the meaning of a symbol

is explained in the text where it is introduced.

ky/ky. Weight concentration.

Symbol Meaning Symbol © Meaning )
A Absorbance. ' Plateau weight concentration.
Ay Amplitude of kinetic decay. & Weight concentration of ith species or
A Angstroms. - component.
a Hyperfine splitting constant. Long semi- c Unit cell basis vector.
axis of ellipse.-Persistence length. c* Reciprocal cell basis vector.
a Unit cell basis vector. D Debye. ’
a* Reciprocal cell basis vector. D Translational diffusion constant.
Parameters composed of rate constants. D, Dihedral symmetry group element.
‘a, Exponent relating sedimentation to D, Rotational diffusion constant.
chain length. Djo. D extrapolated to 20° C, water.
a, Exponent relating viscosity to chain E, Activation energy.
length. ) ) E, Interaction energy between two dipoles.
b Short semiaxis of ellipse. Ey Nonbonded pair interaction potential.
b Unit cell basis vector. E Torsional potentiai energy.
b* Reciprocal cell basis vector. E®,¥),
C Molar concentration. E; Total rotational potential for residue i.
C, Rotational symmetry group element. E Electric field.
Characteristic ratio. i e Exponential function. Unit of charge on
C, Limiting characteristic ratio. electron.
AC}  Standard constant pressure heat capacity F Frictional coefficient ratio.
change per mO_k- ) F(S) Structure factor.
c Veloxity of light in vacuum. Ratio of FuS)  Structure factor, heavy-atom

contribution.




GLOSSARY OF SYMBOLS

Symbol Meaning Symbol Meaning
Fr(S) Structure factor for an array. H,. Magnetic field at which resonance
F,(S) Molecular structure factor. occurs.
F Force. H Hamiltonian operator.
F The Faraday. AH,,  Magnetic field gencrated by local
f Translational frictional coefficient. environment.
Soom Apparent fractional denaturation. h Planck’s constant. '
5o Fraction in denatured state. h hj2n
fu Fraction in native state. I Intensity of radiation. Nuclear spin
fwe  Translational friction coefficient of quantum number. lonic strength.
anhydrous sphere. I(S) Scattering intensity p_latnve to a single
j - Rotational friction coefficient for sphere. . Jioiaron at the onigin.
Sopn Translational friction coefficient for ‘. . .
sphere. 1 Cartesian unit vector.
Soly Rotational friction coefficient around a, J NMR coupling constant.
b axis of ellipse. .J 2 Solute flux. ‘
G Gibbs free energy. J Cartesian unit vector.
AG® Standard Gibbs free energy change per Kp True equilibrium constant for conversior
mole. from fully native to fully denatured
AG®  Intrinsic standard free energy change state.
(with statistical component remo . ed). K, Michaelis constant for product.
AG,;;  Free energy of interaction between two Kg Michaelis constant for substrate.
ligands. K, Coefficient relating viscosity to chain
AG, AG per residue. length.
AGy,  Total free energy change per mole. K, Coefficient relating sedimentation to
AG, Change in electrostatic free energy. chain length.
AG;  Total free energy of formation of K.,  Apparent equilibrium constant for
configuration. conversion from fully native to fully
AAG; Difference in AGy between two con- denattmefl state. o
figurations. K; Macroscopic equilibrium constant.
AG,, Average lzhx gr?wth free energy change g%&?&sﬁuﬁﬁﬁmg
per resicue pau. ‘ constant for transition from native
g g value for free electron, 2.00232. state to intermediate state i.
g, etc.  Component of g-factor tensor. R, Apparent dissociation constant, one-
H Enthalpy. ligand system.
H, Magnetic field in xy plane. K, Apparent dissociation constant, two-
AH Enthalpy change per mole. . ligand system.
AH® Standard enthalpy change per mole. k Boltzmann’s constant. Microscopic
AH, AH per residue. equilibrium dissociation constant.
AH,  Enthalpy change for conversion from ke Microscopic dissociation constant for
fully native to fully denatured state. R state.
AH,,, Apparent enthalpy change for conversion kr Microscopic dissociation constant for
from fully native to fully denatured T state.
state. k; Microscopic equilibrium constant.
H Magnetic field. k Cartesian unit vector.




GLOSSARY OF SYMBOLS

Symbol Meaning Symbol Meaning
L, Contour length. P, Axial ratio.
L L Equilibrium constant for R, T, rK, —log,o K,
L Angular momentum. PO, Partial pressure of oxygen.
1 Length of one polymer bond. (pO,),;2 Partial pressure of oxygen at half
I, Length of statistical segment. saturation.
M Molecular weight. P Momentum operator.
M,  Number-average molecular weight. Q Configurational partition function.
M Weight-average molecular weight. R Gas constant.
Molecular weight of ith macromolecular R Radius of gyration.

§ FIFIZZRRIR X

species.

Species with i bound L, and j bound L,.

Set of all species with j bound L,.

Magnetization.

Magnetization in xy plane.

Statistical weight matrix.

Colligative molality. Mass of object.

Mass of electron,

Molality of ith species.

Quantum number of electron spin along
Z axis.

Quantum number of nuclear spin along
Z axis.

Total molality.

Maguetic dipole operator.

Avogadro’s number.

Number of carbons in amphiphile R
chain.

Number of carbons in amphiphile that
are imbedded in hydrocarbon core-of

Number of statistical segments.

Number of chains in micelle.

Number of head groups in micelle.

Refractive index. Number of sites.
Number of bonds in polymer.

Number of moles of component i.
Number of sites of certain type.

Weight-average degree of
polymerization.

Pitch of helix. Pressure. Patterson
function.

Solvent vapor pressure.

Solvent vapor pressure in presence of
solute.

L]
g
o

U“I)E,’” Fa

o‘!

~
Y

v

e

T o~

Unperturbed mean square radius of
gyration.

Fraction of molecules in R state.
Nuclear position operator.
Coordinate transformation matrix.
Distance of separation.

Donnan ratio.

Radius of equivalent sphere.

Unperturbed mean square end-to-end
distance.

Polymer end-to-end vector.

Electron position operator.

Svedberg (unit of sedimentation
coefficient).

Partial molal entropy.

Unitary part of S,.

AS per residue. -

Standard entropy change.

Unitary standard entropy change.

Scattering vector.

Sedimentation coefficient. Statistical
weight. Equilibrium constant for helix
growth. Equilibrium constant for
base-pair formation.

Sedimentation coefficient corrected to
20°.C, water

Unit vector along scattered radiation.

Unit vector along incident radiation.

Temperature (in degrees Kelvin usually).

Melting temperature.

Longitudinal relaxation time.

Transverse relaxation time.

Transformation matrix.

Time.
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GLOSSARY OF SYMBOLS

Symbol Meaning Symbol Meaning
U%.  Attractive part of p%;.. r Parameter affecting relaxation
u Component of M,, in phase with H, . amplitudes. .
Electrophoretic mobility. y Magnetogyric ratio. (A)/K oy binding
vV Volume. parameter. Velocity gradient dv /dz.
174 Hydrated volume. A, 4;  Parameters composed of rate constants.
v Partial specific volume of component i. é Chemical shift parameter. Phase shift.
v, Maximum reaction velocity in reverse ¥(x) Dirac delta function of argument x.
direction. 4, Hydration (in grams per gram).
v, Maximum reaction velocity in forward By Kronecker delta.
direction. _ £ Dielectric constant. Molar decadic or
v Speed (also called velocigy). Component residue extinction coefficient.
of M, out of phase with H,,. Ae Circular dichroism (¢, — ¢).
; Initial reaction velocity. n Solution viscosity. :
{vy) Effective average solute velocity. o Solvent viscosity.
v Partial molar volume. Neat Relative viscosity.
7, Partial molar volume of pure solvent. g Spexific viscosity.
v Velocity. [n] Intrinsic viscosity.
W(r)  Radial distribution function of end-to- o, Fractional saturation of ith site.
end distance. o ) Scattering angle. Fractional helicity.
W(x,y,z) Er}gl-‘t;-izr;d distance distribution [6) Molar ellipticity.
WS,  Repulsive part of 45, 4 Matrixof Ajs.
mic  “CPRLSIVE DALt O famic- i Eigenvalue. Wavelength. Kinetic decay
(X) Equilibrium concentration. time.
AX) Diﬂ'er‘;:x}ce'between tempqral and A jth kinetic decay time of jth eigenvalue.
equilibrium conceutration. . .
x Bottom of cell A Chemical potential per mole. ‘
b X o Standard chemical potential per mole.
Xm Meniscus position. i Chémical potential per gram.
y g;n e_rallphysmal pzt?g‘:::t.ur od state R Standard chemical potential per gram.
Yo ysical property of dem ' 4% Standard chemical potential of
YN Physical property of native state. amphiphile in micelle,
y Fractional saturation of site. W Standard chemical potential of
Ve Fractional saturation with ligand F. amphiphile in aqueous phase.
z Charge on macromolecule or ion in ' Magnetic moment.
units of e. ] n Electric dipole moment operator.
4 Tonic valence of ith ion. v Frequency. Simha factor in viscosity.
x Degree of association. Dimensionless Moles of ligand bound per mole of
binding parameter like (F)/kg. macromolecule.
oy Hill constant. vy Saturation density for lattice with N
B Dimensionless binding parameter. units.
B Bohr magneton. n Osmotic pressure.
B. Nuclear magneton. P Mass density (in grams per cm?).
B Mandelkern—-Flory-Scheraga parameter. p(r) Electron density.
I3 Scheraga—Mandelkern parameter. a Nucleation constant.
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Symbol Meaning Symbol Meaning
Gy Superhelix density. w Circular frequency or angular velocity.
T Number of supercoils. Wo Larmor frequency.
TF Fluorescence decay time. o', 0’ Nucleic acid backbone torsional angles.
Ty Ty Rotational relaxation time for a-, b-axis Aw,;;  Line width.
orientation. ® Angular velocity.
1. Rotational correlation time. imag Imaginary part of.
7, Rotational relaxation time of sphere. O Average.
7,1 Reaction relaxation times. O Overlap integral.
@ Electrical potential. Voltage difference. gy Expectation value integral.
. Universal constant for random coils * Superscript, complex conjugate, as in F*.
21 x10%. i Amplitude of complex number or length
¢ N-C’ torsional angle. Phase of complex of vector, as in {F|.
number. v Vector differential.
P10 D205 ) () Molar concentration, as in (A).
etc  Monomer wave functions. + Superscript, transpose of matrix, as in
PF Fluorescence quantum yield. At
b, Practical osmotic coefficient. -~ Superscript, convolution product, as in
¢', 9"  Nucleic acid backbone torsional angles. AB.
[¢) Molar rotation per residue.
b4 Mole fraction of all solute species.
% Mole fraction of ith component.
L4 Mol fraction of Ath component. General Rules
Age Mole fraction G + C. K Macroscopic equilibrium constant.
X Glycosidic bond torsional angle. k Microscopic equilibrium constant or
v C'-C torsional angle. rate constant.
¥, ¥"  Nucleic acid backbone torsional angles. C Molar concentration.
Qp Number of ways of putting k helical c Weight concentration,
units into j separated sequences. M All matrices and operators.
Q. (n— k +1) x_mrpbcr of ways of plgcipg k t. All unit vectors.
helical units in one sequence within . :
chain of n residues. Rg Radius of gyration.
Q. Number of ways of assorting i items X Mole fraction.
(ligands) in n boxes (sites). @ Voltage or electrical potential.
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