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PREFACE TO DOVER EDITION

Prior to its being reprinted, the text has been revised. Add-
itions, alterations and corrections have been made where
necessary to effect improvement. The definition given at (1)
§1-11 is that of the p-multiplied Laplace transform, which is
used throughout the book. The reason for the presence of P
outside the integral sign is given in §2.182.

LoxNpow, June, 1962. N.W.M.
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PREFACE

TH1s book is intended as an introduction to Modern Operational
Calculus based upon the Laplace transform. It is written for
post-graduate engineers and technologists. Nevertheless the
purely mathematical part may be useful to advanced under-
graduates in mathematics. The subject has attracted much
attention during the past three decades, owing largely to its
relevance to Heaviside’s operational method. The Laplace
transform of a function as defined by (1) § 1:11, is identical with
what Heaviside called its operational form. The L.T. method
of solving ordinary and partial linear differential equations is of
comparatively recent date. Being logical and unambiguous, it
is preferable to that of Heaviside, which may now be laid to
rest in all its glory—such is the march of scientific progress!

A number of theorems or rules are established in Chapter 11,
the proofs usually being more complete than those given origin-
ally. Theorems 6, 6a, 9, and 14* are new. In Chapters ITI-VI
the various theorems are used (a) to solve ordinary and partial
linear differential equations, (b) to evaluate difficult integrals,
(c) to obtain mathematical relationships and expansions, (d) to
derive L.T.S. of various functions. Inclusion of a modern
treatment of periodic impulses of finite and infinitesimal dura-
tion based upon complex integration seemed desirable. Accord-
ingly Chapter VII is devoted to this subject, and it is a résumé
of work I did during 1936-8. It is not intended for those un-
acquainted with complex integration, but it may prove an in-
centive to the study of this important branch of mathematics.
The reader is advised to commence at Chapter I. No mathe-
matical text is intended to be read from cover to cover like a
novel. Accordingly the sections marked * may be omitted in
a first reading, and reference made to them from time to time
as the necessity arises.

¢ This theorem, discovered in 1940, was published in the Mathematical

Gazette 80, 85, 1946.
v



vi PREFACE

Some remarks on the ever-controversial topic of rigour may
be appropriate. The text is perhaps more rigorous than is
usual in a work on technical mathematics, and in this respect
the technical reader is asked to consider carefully the following
remarks, which are based on my own experience.

Engineers set a high standard of mechanical accuracy in
limit gauges and jigs used for precision work and mass produc-
tion methods. By manufacturing parts accurate to 10~ inch,
or even less, any individual spare, of the thousands turned out,
will fit immediately into the intricate machine of which it is a
component. High accuracy in machining eliminates trial and
error, so a perfect fit is assured a priori. This being so, it is
reasonable to ask engineers and technologists to accept a similar
situation where mathematics is concerned. For the accuracy
of the engineer is analogous to the rigour of the mathematician.
Moreover, in this book the validity of operations like inverting
the order of integration in a repeated integral, differentiation
under the integral sign, term by term differentiation and inte-
gration of infinite series, are checked as they occur. In other
words, the ‘ mathematical limit gauge’ is used to test the
analysis at various stages, so that ultimately the answer is cor-
rect without reliance upon flukes. Appendices are given so
that the reader will know which ‘ mathematical limit gauges’
are needed, when and how they should be applied.

In some technical mathematics the lack of reasonable rigour
introduces uncertainty in the analysis. This, the inadequate
time allotted at college, and the way in which the subject has
been expounded, is largely responsible for the scepticism of
engineers and engineering faculties. In the specifications and
working drawings of a machine, dimensions, limits, materials,
and processes of manufacture must be stated unambiguously,
so that any engineer in, say, the antipodes, may understand the
designer’s intentions exactly. Why should this principle not
apply in technical mathematics?

The problems in §§ 8-1-8-6 should be regarded as an integral part
of the book. They contain important formulae and additional
theorems, the proofs of which would have taken up too much
space for inclusion in the text. Bessel functions [reference 11]
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have been used freely, since they occur so often in modern
applied and technical mathematics. In fact the solutions of
a large proportion of problems therein may be expressed in
terms of exponential and Bessel functions. The reader is ex-
pected to have an elementary knowledge of the latter, e.g.
Chapters I, II, and the early part of VII in reference [11].*

Mr. H. V. Lowry kindly read the manuscript, and I am
much indebted to him for his valuable suggestions.

LoNDoN, January, 1941. N. W. M.

THE lapse of some seven years, between writing the MS. and
its publication, is due entirely to war and immediate post-war
conditions, which have caused such an upheaval in the printing
trade. The war has emphasised, however, the necessity for
enhanced facilities for the study of Technical Mathematics,
There is no  chair ’ of Technical Mathematics at any University
in Great Britain. The time is ripe for distinct departments of
Pure, Applied, and Technical Mathematics. The Professor of
Technical Mathematics would have to be trained in both
mathematics and technical matters, while industrial experience
and the ability to impart knowledge would be essential.

It is appropriate to refer to the discussion on Technical
Mathematics at the Mathematical Association in April 1945.1
In general, those who lecture to undergraduate and post-
graduate engineers expressed the view that in future this sub-
ject must play a much more important part in the curriculum
than it has done hitherto. The ultimate purpose is to enable
engineers and technologists to acquire a sound but broad know-
ledge of mathematics and its application to technical matters.
Difficult mathematical problems requiring an intensive know-
ledge of certain branches of the subject should be handed over
to specialists.

It may not be out of place to quote from the proposal I made
at the above discussion, namely, ¢...a report on “ The
Teaching of Mathematics to Engineers ” be drawn up by repre-

* Throughout the text the numbers in [ ] indicate the references

onp. 212,
1 Mathematical Gazette, 29, 145, 1945.
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gentatives of the Mathematical Association and members of the
leading Engineering Institutions. . . .’

Prof. T. A. A. Broadbent and Mr. A. L. Meyers have read and
criticised the proofs in detail. Mr. Meyers generously under-
took the laborious task of checking the whole of the analysis
and the problems in §§ 8-1-8:6. I have great pleasure in record-
ing my appreciation of their help which has been invaluable.

N. W. M.
Loxpon, May, 1947.



SYMBOLS

R (v) signifies the real part of v : p and v are usually unrestricted
numbers, i.e. they may be real, imaginary or complex : if
real they are generally non-integral: m, » are usually
positive integers : r may take any integral value including
zero, which it is convenient to regard as a positive integer.

f(t)= $(p) signifies that ¢(p) is the p-multiplied Laplace trans-
form of f(t), ¢ being real >0. f(t)~>®(p) signifies that P (p)
is the ordinary Laplace transform of f(t) as defined at (1)
§2-144. Unless stated to the contrary, or the preceding sign is
used, the Laplace transforms in the book are the p-multiplied
type defined by (1) § 1-11. See the first footnote on p. 2.

f(x, t) signifies a function of x and ¢, e.g. e~='/%, 2% -1/,

é(p; h,y, h,) signifies a function of p, &,, h, (see § 1-11).

f(t)~e—*t signifies that the r.h.s. is an asymptotic formula for
f(¢) when ¢ is large enough.

| z | signifies the modulus of x, always real and positive.

Z | f.(t) | signifies that the moduli of all functions in the series
r=0

are to be summed.

The range ¢ > h signifies all values from ¢t=h to t >+ , s> 0.

h,<t<h signifies all values in any closed interval of ¢, and
includes the end points k,, h. A closed interval is finite.

h, <t <h signifies all values in an open interval or range of ¢,
excluding the end points 4,, k.

f(¢) is continuous in k, << ¢< h, signifies that the function is con-
tinuous for all values of ¢ in the closed interval (A, A): the
continuity in a finite interval implies that f(f) is bounded.

t #0 signifies that ¢ may not have the value zero.

p—>+0 and p—>—0 signify that p approaches zero from (a)
the positive side, (b) the negative side.

~ gignifies ‘ approximately equal to ’.

=)0
f (t)—g}t<<(i<th>h} signifies that f(t) is equal to e* in the
xi



xii SYMBOLS

range £=(0, ) but excluding the end points; and is zero
for all <0 and ¢>h, being undefined at t=0, A.

Heavy type, L, R, C, G, signifies inductance, resistance, etc.,
of unit length of cable.

When ¢ is near to or approaches some limiting value, the
notation f({)=O(») means that |f(t)| <K, K being an
absolute. positive constant independent of variables or para-
meters.

J(#)=0O(1) means that the function is bounded. When
>+, (2+a?)2=0(1); t(et+1)=0(); $3/(1+)=0(1)
with bound unity. When >0, (12 +a2)=O(1); sin t=O (¢).

The symbols for the various mathematical functions in the text
are used in reference 13, where the functions are defined.
This reference work contains an extensive list of p-multiplied
Laplace transforms for functions which occur in pure, applied
and technical mathematics.

Lercre’s THEOREM IN § 1-16.

In the Laplace transform sense, if f(0)520 but finite, a dis-
continuity occurs. Nevertheless when considered in any
interval including the origin, f(#) itself may be continuous,
e.g. cos t, Jy(f), where f(0)=1. Under these conditions, in a
broad sense (a) § 1-16 is applicable, and (conventionally) f(t)
may be regarded as continuous in {Z>0. Instances of this
will be found in §§ 2-:240, 3-12, 5-13, (@) in C, and C in § 9
Appendix III.

Similarly the analysis in § 7-12 is valid if f(?) is finitely discon-
tinuous, in the sense intended in 1° § 1-15, at the ends of the
finite interval (h;, &,).



FOREWORD

Tms is addressed to the technical reader whose mathematical
training covers a more restricted field than that of the pure
mathematician. The technical reader’s experience is often
limited to continuous functions. Herein it is necessary to
consider functions which may be either finitely or infinitely
discontinuous. Differentiable functions must be continuous,*
whereas integrable functions can be either continuous, or
finitely and (in some cases) infinitely discontinuous. Apart
from discontinuities, functions must be single valued to avoid
ambiguity. If y2=z, y= +a'2 (unless £=0), and the positive
branch is chosen usually. It must be appreciated that infinity
18 not a number, but a limit which exceeds any number we
care to name, however large it may be. For the sake of
brevity, ‘infinity’ (w0 ) is used frequently in such a way as to
appear to be a number, e.g. the upper limit in an integral.
The appropriate viewpoint is that the value of the integral is
required as the upper limit— oo.

In enunciating a theorem, the conditions for its validity
must be stated fully. Otherwise the theorem might be used in
cases where it did not hold. Sometimes a theorem may hold
under conditions less stringent than those given in the proof.
If stated as mere formalities, the theorems in Chapter II
become brief and simple. Bereft of the conditions for their
validity, they are analytically incomplete and cannot be used
with confidence. Omission of logical steps in analysis is just as
serious a defect as absence of credits in a cash account. The
answer to a problem is essential, but its correctness is imperative,

* There are, however, certain continuous functions (not contemplated
herein) which are not differentiable. Throughout the text a continuous
function means one which is differentiable. Functions of the type
illustrated graphically in Figs. 22, 25(b) are continuous and differentiable
between their points of finite discontinuity. They are piecewise con-
tinuous.

ses
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a condition which can be satisfied only by analysis in the appro-
priate detail. By perseverance in the early stages of the text,
and frequent consultation of the appropriate appendices, the
reader will find that the proper mental attitude is soon ac-
quired.
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THE LAPLACE TRANSFORM

I1-11. Definition. Consider the infinite integral

pj-:e"‘f(t)dt:¢(p), v rennenn(1)

» being a suitable parameter, either real or complex, while
f(t) is a single-valued* function integrable in every positive
interval of £. {isreal and >0. This integral, but without the
external p, was introduced into mathematical analysis by
Laplace about the year 1779. ¢(p), the function obtained by
evaluating the integral, we define to be the p-multiplied Laplace
Transform of f(t). If ¢(p) is given, f(t) is said to be its inverse
or interpretation in terms of the real variable . When the
range of integration in (1) is t=(0, + ), ¢ is a function of p
alone. If the range is t=(h1, hs), 0<<hi<hs, ¢ is a function
of p, hy and hs. We then write

hy
» Le—»tf(t)dt=¢(p S By By ceeeeereeeen(2)

the r.h.s. being defined as the p-multiplied L.T. of f(t) for the
interval t=(hy, ;). Integral (2) may be written in the form (1),

for if F(t)=f() |t when 0<h, <t <h,,
=0 [ t<hy, t>h,

then P I:e-”‘F(t)dt=¢(p T X R (3)

Integral (1) is a particular case of (2) with h,=0 and
hy—+ . When pisreal and >0,} (1), (2) may be interpreted

* The question of f(t) being continuous is discussed later. Integra-
bility of f(2) in £ =(0, h) implies that of e~7tf(¢), a point to be remembered
in connection with enunciation of the theorems which follow, e.g. § 1-21.

t Using Heaviside’s unit function (Appendix I), this may be written
in the form F(¢) =f(2) [H(t - h,) ~ H(t —h,)] also. Fig. 20 illustrates the
case where f(¢) =t3, h, =0, h, =h.

1 »>0implies the reality of p, but since p may be complex sometimes,
this distinctive wording is used generally.



2 MODERN OPERATIONAL CALCULUS

geometrically as the areas of the exponentially damped
function p f(t) between the limits ¢ = (0, + o ), t = (h,, k,), respec-
tively.

The p-multiplied Laplace transform of a function, as defined
by (1), is usually identical with what Heaviside called its
operational form,* and the latter nomenclature is used fre-
quently. By way of variation, some writers refer to ¢(p) as
the image of the original function f(t). The most rational
terminology seems to be that where ¢(p) is regarded as the
p-multiplied Laplace transform -or L.T. of f(¢). The name
Laplace must be appended, since there are other systems, where
Fourier, Gauss, Hankel, Hilbert, Mellin, and Stieltjes trans-
forms exist. Plerein as elsewhere [12, 13], we shall employ the
symbol =, namely, a heavy u lying on its side. Thus to signify
that ¢(p) is the p-multiplied L.T. of f(¢) we write

FO)=4p) }T e o (4)
or ¢@)=f1®
the closed end of the symbol pointing to the L.T. This is a

very convenient and terse notation, the symbol being formed
by a single stroke of the pen.

I1-12. Example. Find the L.T. of ¢, if v=w+iv and
Ry)=u>-1. -
From (1) § 1-11 ¢(p)=p .[o C_Mt'dt, ........................(l)

=I'(L+v)/p) eeereriiniiiiniinininnnn(2)
or r=I'(1+v)/p, N )]

by [12, p. 75]. Integral (1) diverges at the lower limit, unless
R(»)> -1, so when R(»)< -1 the function has no L.T.

I'l+v)= I " e-tpdt is the gamma function introduced by Euler
0

in 1729 [11, p. 177].

* The Laplace transform was defined originally without the external
p, and in certain cases this is expedient (see § 2-144). There are
several points in favour of the p-multiplied L.T.: (a) identity with
Heaviside’s operational forms, (b) the dimensional equivalence of f()
and ¢(p) [see § 2:182], (c) the L.T. of a constant A is itself, and not 4/p.
Formulae on pp. 208-211, and in the references on p. 212 are p-multiplied
L.T.S., as also are those in the text, unless stated otherwise.

+ This notation refers to the L.T. for the interval t=(0, ®). For the
interval ¢=(hy, h,), see (2) § 1-11.
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I:13. Integral equation for f(t). In this case the unknown
fanction f(t) occurs under the integral sign. Thus if ¢(p) is
known, but f() is unknown, (1) § 111 is an integral equation
for f(¢). Additional examples will be found in §2-244;
Chapters III, IV ; 1-5, § 8:5.

If pj:e“"‘f(t)dt=l'(l+v)/p', eeererereeereee(1)

then by §1:12, f(t)=t is a solution, provided R(v)> -1 to
ensure convergence.

1-14. Uniqueness. We now ask if the solution given in § 1-13
is unique, i.e. is it the only solution? In reference [9] Lerch
showed that if f(?) is continuous in £>>0, but in certain cases
may be unbounded at + c, it is determined uniquely by ¢(p).
Now # is continuous in ¢>>0, but unbounded at + o, if v is real
>0, or if R(v)>0, so with this proviso it is a unique solution of
(1) § 1-13. Continuity, however, imposes an unnecessary re-
striction, since f(¢) is determined uniquely by ¢(p) in the case of
certain finitely discontinuous infegrable functions, and certain
infinitely discontinuous integrable functions. Before consider-
ing these functions in relation to (1) § 1-11, we shall introduce
some definitions.

I-15. Discontinuous functions. A function may be discon-
tinuous in several ways :

1°. Finitely discontinuous as in Figs. 13-17, 20-22, 25,
27-29 at the positions of the thin vertical lines. These are
known as ordinary or simple discontinuities. The functions
illustrated in Figs. 21 d, ¢, 22, 25 b may be regarded as periodic
piecewise * continuous functions. They are integrable over a
finite range (0, ¢), and expressible in Fourier series by using
the established procedure.

2°. Infinitely discontinuous like ¢-2, #-14 or log¢ at ¢=0,
where each function has an ¢ infinity °.

* A ‘ piecewise ' continuous function is continuous in stretches, de-
void of infinities, and integrable in any finite range of #. It may >
with ¢, e.g. the  staircase * function of Fig. 25a. A thin vertical line at
a discontinuity is conventional, and is not part of the graph. Near 'a

discontinuity a function is considered as ¢ approaches from either side.
In Fig. 13, f(t)=0 as t— - 0, f(t)=E, as t> + 0: at{=0 it is undefined.
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3°. Oscillatorily discontinuous like sin (1/¢) at the origin. As
t— + 0, the function oscillates with constant amplitude, but the
rate of oscillation — , i.e. the interval between consecutive
zeros —0.

So far as L.T.S. are concerned, we shall confine our attention
to the type of function in 1°, and those in 2° which fall in
the category illustrated below. When

-l<v<0, or -1<RB(»)<0,

t# has an infinity at the origin. Nevertheless integral (1)
§ 1-13 converges, and # is a unique solution thereof. Other
examples are log ¢ and the Bessel functions Y (t), K,(t), illus-
trated in Figs. 2, 3. As explained in § 1-211, convergence of
(1) § 1-11 at the origin depends upon the ‘ order of infinity ’
of f(t) as t— + 0 being less than unity. This condition is satis-
fied by log ¢, Y,(t), K,(t), all of which are O (log f) when ¢ is
small and positive. Since

h
I log tdt=h(log h=1), (B>0), cevevrrerrena(l)
0

the integrals

h h h
j'e—wlogtdt, I -2t ¥, () dt, I - K, (Odt, (p>0), ...(2)
0 [}

[}
converge by comparison.
Most of the functions considered herein exist when ¢ <0, but
from the L.T. viewpoint, we consider the range £ >0 only. If
f(¢) is the function, then for L.T. purposes we define as follows :

FO=FOH®), coveerrervererrririrenns (3)

where H(t) is Heaviside’s unit or step function treated in
Appendix I. This definition is equivalent to
F@y=f@)1t>0
AL SRR
For convenience, however, we shall usually take f(t) to signify
F(t) as so defined. Since f(t) =0 when ¢ <0, if f(0) =0, there is
no discontinuity at the origin, e.g. Fig. 20. But if f(0)70,
e.g. cos t, J,o(t), which have the value unity at t=0, a finite dis-
continuity occurs (see Fig. 2 for J,(t)).



