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Preface

“The mind unlearns with difficulty what has long been
impressed upon it.’

Seneca

Reductionism, is, without question, the most successful analytical approach
available to the experimental scientist. With the advent of techniques for
cloning and sequencing DNA, and the development of a variety of
molecular probes for localizing macromolecules in cells and tissues, the
biologist now has available the most powerful reductionist tools ever
invented. The application of these new technologies has led to a veritable
explosion of facts regarding the types and organization of nucleotide
sequences present in the genomes of eukaryotes. These data offer a level of
precision and predictability which is unparalleled in biology.

Recombinant DNA techniques were initially developed to gather
information about the structure and organization of the DNA sequences
within a genome. The power and potential of these techniques, however,
extend far beyond simple data collection of this kind. In an attempt to use
the new technology as a basis for analyzing development and evolution,
attention was first focused on the topic of gene regulation, an approach that
had proven so successful in prokaryotes. It is now clear that this has not
been an adequate approach. Lewin (1984) has quoted Brenner as stating ‘at
the beginning it was said that the answer to the understanding of
development was going to come from a knowledge of the molecular
mechanisms of gene control. I doubt whether anyone believes this any
more. The molecular mechanisms look boringly simple, and they don’t tell
us what we want to know.” Nor is this surprising. The role of genes in
specifying the primary structure of protein molecules is usually far removed
from the developmental end products to which those molecules contribute.
Consequently, the solutions to developmental problems are much more
likely to be found at the cellular and intercellular levels than at the level of
transcription.

Although the approach was too limited, the philosophy was right. While
we appreciate that there are aspects of development that transcend
molecular biology, we believe it will not be possible to elucidate these
aspects without an understanding of the molecular mechanisms upon which
they depend. Thus while cell-cell interactions are a fundamental feature of
all developmental programmes, the most direct approach to resolving this
form of interaction must come from an understanding of gene products
which, like the neural cell adhesion molecules, a series of membrane
associated glycoproteins which control cell surface properties (Edelman
1985, reviewed in Rutishauser & Goridis 1986).
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As far as evolutionary biology is concerned, Lewontin (1982) has argued
that the deepest questions of evolution ‘will never be resolved by molecular
biology alone.” There is certainly no doubt that some occurrences of the
deepest significance to evolution belong to this category. For example,
virtually all the species of plants and animals that have existed on Earth are
now extinct, so that extinction must rank as the most common evolutionary
event. Major extinction events over the past 250 million years show a
statistically significant periodicity (Raup & Sepkoski 1984). Although the
precise causes of this periodicity are not known, there are grounds for
arguing that the forcing agent was environmental rather than biological. If
the impact of the physical environment did indeed result in non-random and
short-lived mass extinctions, then the direction and type of evolutionary
change may well have been uniquely and irrevocably altered, but molecular
biology can have nothing to say about such events.

However, in a strict sense, Lewontin’s viewpoint is overly pessimistic
since the deepest evolutionary questions which are resolvable will certainly
require the aid of molecular biology. Indeed, there is no doubt that the
findings of molecular biology impinge far more directly on the major
problems of both development and evolution than any other approach to
these problems. In the chapters that follow we shall try to show how, and
why, they do so.

Specifically, we attempt to assess and interpret the facts concerning
genome structure in terms of fundamental problems of genome function in
relation to development and evolution. Our main aim is to evaluate the
impact of the modern molecular work on long-standing biological
problems.

B. John & G. L. G. Miklos
Canberra
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1

General molecular organization
of genomes

‘Far more critical than what we want to know or do not know
is what we do not want to know.’

Eric Hoffer

1.1 DISSECTING GENOMES

DNA is the most important component of the eukaryote genome in the.
sense that it ultimately provides the essential coding information necessary
for specifying the production of all other molecules within the eukaryote
cell. Added to this, it is now the most tractable component in a
technological sense. Much of this technology is now so well known as to
need no introduction (Weinberg 1985). In this book we have chosen to
highlight the fly, Drosophila melanogaster, which is, without question, the
most thoroughly studied eukaryote in genetical, developmental and molecular
terms. For this reason we begin by outlining the four principal techniques
currently in use for dissecting the genome of Drosophila melanogaster, for
isolating specific genes within that genome and to which we refer in the
other sections of this book.

1.1.1 Microdissection and microcloning

One technique that has enormously speeded up gene isolation in Drosophila
melanogaster, and at the same time made the screening of large DNA
libraries effectively obsolete, is termed microcloning (Pirrotta 1984). This
involves the molecular cloning of picogram quantities of DNA. Although
this technique has now been applied to mammals, it was pioneered in
Drosophila melanogaster. Here giant polytene chromosomes are present in a
variety of larval tissues. The remarkable size of these is a consequence of up
to ten rounds of chromosome replication without either chromatid
separation or cell division. Consequently, the DNA helices are duplicated
more than 1000 times. In this polytenization process the different DNA
sequences do not behave uniformly. The highly repeated sequences that
make up the heterochromatic regions of the mitotic chromosomes replicate
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Plate 1 The polytene chromosomes of the larval salivary gland of Drosophila
melanogaster (photograph kindly supplied by Professor George Lefevre).

little, if at all. These regions coalesce in the polytene nucleus to form a
chromocentre, a region consisting of numerous attenuated strands which
join the base of each chromosome arm. The result is that the polytene
chromosomes are made up almost entirely of the euchromatic portions of
the mitotic chromosomes which constitute some 70% of the total DNA.
These are laterally duplicated by a factor of 1000 times or more, and the
chromosome arms are partitioned into a series of transverse chromatic
bands (Plate 1). :

These polytene chromosomes provide a cytological map of the genome,
and individual polytene bands furnish specific landmarks which allow for
the localization of both genes and structural rearrangements. With over
5000 definable bands, the genome is well partitioned even at the level of the
light microscope. Consequently, in situ hybridization with DNA or RNA
probes has a large effective target size even when unique sequences are
employed. Figure 1.1 illustrates the chromosomal zip code employed in
referring to individual bands. The euchromatin of each major chromosome
arm is divided into exactly 20 numbered divisions in the following way: the
X-chromosome (1) = 1-20; the left arm chromosome 2 (2L) = 21-40; the
right arm of chromosome 2 (2R) = 41-60; the left arm of chromosome 3
(3L) = 61-80; the right arm of chromosome 3 (3R) = 81-100; with two



