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PREFACE

The purpose of our book is to describe a set of techniques for developing
software for large microprocessor-based systems, and for managing such
development activities. The book is practical in its orientation; it describes
a particular set of techniques that have demonstrably improved the
effectiveness of microprocessor development and management.

The topics of microprocessor software development and management

have grown in interest for several reasons:

(o]

Microprocessors are being used in a large and increasing number of
applications to provide greater functionality at a lower cost: consumer
products, appliances, automobiles, industrial control, personal
computers, office equipment, and so forth.

The software systems for microprocessors in such applications are
increasing in size, complexity, and sophistication, thus creating a
demand for more effective software development and management.

Many software developers of microprocessor systems have little
training in developing the large software systems that typify modern
microprocessor-based products.

Many managers of microprocessor-based system products have little
knowledge or experience in managing large software projects.

The software development cost for microprocessor-based systems is
large (often tens or hundreds of man-years), typically larger than the
cost of developing the electronic hardware on which the software runs,
and almost always larger than it should be.

Our book is intended for two principal audiences:

o)

Students at the upper class or graduate level who study
microprocessor software in electrical engineering, computer
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xii Preface

engineering, computer science, or related programs of study. Such
students seldom have the opportunity to work on large projects, and
thus lack the knowledge of a practical development environment to
which many of them will graduate.

o Industrial practitioners who want to develop and manage significant
microprocessor software activities. These professionals may have
experience writing small programs on microprocessors or writing
programs for large data processing systems. This basis coupled with
the information presented in our book provides strong capabilities for
developing and managing microprocessor-based systems.

We have used material in this book with hundreds of people in these two
groups, effecting substantial improvements in personal and corporate
capabilities.

We approach the subject of microprocessor software development
assuming that the reader has some knowledge of microprocessors and
programming. Readers should have a working knowledge of
microprocessors, have written small assembler language programs for a
particular microprocessor, and have done small programming projects with
a higher level language to understand the fundamentals of programming
concepts. There are a number of books that address such topics; our book is
a second book addressing advanced topics for large microprocessor-based
systems. Using introductory knowledge as a starting point, we describe in
Chapters 1 through 10 specific techniques for engineering significant
microprocessor software systems. The techniques cover the phases of
software engineering — requirements specification, design specification,
coding and debugging, testing, and maintenance — concentrating on
microprocessor applications with emphasis on real-time aspects. To
illustrate techniques, the examples used are short and address typical
microprocessor applications, so that they can be grasped quickly. The book
describes specific techniques that address the entire software development
life cycle for microprocessor applications, in contrast to surveying a large
number of techniques concentrating on one phase of software development,
or orienting the techniques toward business data processing applications.

In a similar manner, we approach the subject of microprocessor
software management assuming that the reader has some knowledge of
management activities such as general project planning, PERT methods,
task assignments, and delegation of authority. In the second part of the
book, Chapters 11 through 19, we address software management for
microprocessor-based systems by extending relevant aspects of traditional
managerial concepts such as planning, staffing, organizing, and reviewing
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to facilitate developing software for microprocessor-based products.
Facilities required for developing microprocessor software are described.
The special problems of managing embedded microprocessor software are
examined in detail. Recommendations are given for developing software
technology from both the practical aspects of architecture, tools, and
techniques, and the personal aspects of professionals who constitute a staff.
The book concludes with software management lessons that address
problems typically encountered when microprocessors play a significant
role in the product development repertoire in a company. The software
development of a real microprocessor-based product in a large company is
reviewed and critiqued.

In writing the book we have incorporated several concepts to increase
its utility to students and professionals. The book uses a practical technique
orientation to software development and management for microprocessors,
based on real product development experiences; it is not a survey of
theoretical concepts. The book concentrates on microprocessor examples; it
is not a general data processing book. It addresses life cycle aspects of
software development and management, not just the details of a
methodology to support one phase of product development. It describes
techniques that are integrated with one another throughout the
development process; it is not a collection of independent articles addressing
specific issues within the development process. The book is organized to
present material in the order engineers and managers will be comfortable
reading, building on coding and debugging knowledge and using this as
motivation for design, requirements, testing, and maintenance. As the
coding and debugging phase of software development is the phase with
which engineers and managers are the most familiar, we present it first,
even though it is neither the first phase nor the most important phase in
microprocessor software development. With a thorough understanding of
coding and debugging, readers will better understand the need for the
design specification phase and the requirements specification phase, the
most important phase in software development. The book also includes a
chapter that summarizes techniques for microprocessor development in
chronological order (Chapter 10) and a chapter that summarizes specific
management directions (Chapter 19).

Many people assisted us in the preparation of the book. Steve
Palumbo, Dan Auman, and John Kemp of Xerox Corporation helped with
the preparation of several figures on software design. William Stumbo of
Xerox assisted in the preparation of the index. Andrea and Roger Hopkins
of Publishease prepared many of the figures. Jeanne Paige of Xerox
Corporation typed several drafts of the book over an extended period; her
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patient competence made preparation of the manuscript enjoyable. Marie
Vasapolli and Nancy Taylor of Xerox made noteworthy contributions as
well. Finally we would like to thank our colleagues at Xerox Corporation
and Michigan Technological University for their encouragement and
support during this work. Their reviews and comments improved not only
the presentation but the substance of the book as well. Michael Nekora of
Xerox made several insightful comments, which we hope we have conveyed
to the reader.
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INTRODUCTION TO
MICROPROCESSOR SOFTWARE
SYSTEMS DEVELOPMENT

1.1 The Role of Software in the Microprocessor Revolution

The decade of the seventies will surely be remembered for witnessing the
commercial introduction and utilization of microprocessors. Not only did
their deployment revolutionize the use of electronics in a multitude of
applications, but their continued improvement demonstrated incredible
technological maturation. From the simple characteristics of the first four-
bit microprocessors to the sophisticated features of modern sixteen-bit and
thirty-two-bit microcomputers, the capabilities provided by these
microelectronic marvels have increased dramatically. While capabilities
have increased, the cost of employing these "computers-on-a-chip" has,
surprisingly, decreased when examined on a cost-per-function basis. The
increasing availability of capable, inexpensive microprocessors has
facilitated the development of increasingly sophisticated systems, ranging
from simple calculators to real-time systems that simultaneously support
several activities and input/output devices.

The ability of microprocessors to support complex applications has
been made possible not only by improved hardware capabilities such as
greater functionality of instructions, larger on-chip memories, and faster
instruction execution times, but also by larger, more powerful software
systems. Whereas the size of early microprocessor programs ranged only up
to a few thousand bytes, modern systems frequently reach fifty thousand
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bytes and more. The effort involved in developing software systems of such
capabilities requires technological knowledge, engineering discipline, and
management direction. The development of these capabilities often
proceeds at a slower rate than that of the microprocessor hardware
technology. When this is coupled with the realization that developing large
software systems for microprocessors is exponentially more complex than
developing small systems (with which people typically experience some
success in initial attempts), it is easy to see why software development has
been criticized for products that are expensive, late, and unreliable.

Microprocessor software systems development need not deserve this
reputation. With the appropriate application of engineering and
management tools and techniques, microprocessor software systems
development can be a rewarding and successful enterprise. The purpose of
this book is to assist in the accomplishment of this goal.

Itis appropriate to examine the historical background which has led to
the poor opinion in which software is often held today. Early microprocessor
software development activities tended to emphasize the differences from
traditional software development, citing justifications such as

o  Close functional relationship to hardware being replaced
o Small program sizes

0 Use of low-level languages, particularly machine and assembler
languages

The current trend in microprocessor systems deviates from these
viewpoints:

o} Microprocessors are being used where flexibility and expandability
are required; specially designed VLSI chips and "programmable logic
arrays" are now being used to replace hardware of moderate
complexity where microprocessors were formerly used.

0 As mentioned earlier, large programs are as much the rule as the
exception.

o Higher level languages can, should, and are being used in most
microprocessor applications.

It is useful to note, however, that microprocessor software often exhibits
differences from the typical data processing programs, which constitute a
significant portion of traditional software systems. These differences
include the following:
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0 Microprocessor software frequently represents only a small part of a
system composed of several electrical, mechanical, and other
components. The end user need not (and often is not) aware that a
microprocessor is integrated in the system.

0 Microprocessor manufacturers seldom supply extensive support
system software (although this trend is changing), and, as a result,
developers frequently must design and implement all the
microprocessor software for their system. This ranges from low-level
operating system tasks such as interrupt and I/O handling to high-
level application specific tasks.

0 Microprocessors often support real-time systems, wherein immediate
response to asynchronous external events characterize normal
requirements.

) The principal memory for program storage in many microprocessor
systems is read-only memory (ROM), due to its cost savings over other
memory types, such as electrically programmable ROM (EPROM) and
read/write random access memory (RAM). The cost per system aspect
is especially important when considering that microprocessor products
often have sales or usage volumes in the tens and hundreds of
thousands (such as calculators, automobiles, cash registers, and
games).

o Another aspect of products with imbedded microprocessors is that
companies often produce product families in which microprocessor use
may vary in only minor ways among products in the same family.

These variations on traditional software systems result in the use of tools
and techniques that are peculiar to microprocessor software development.
Much of the development activity for microprocessor software, however,
adapts techniques used in traditional software development.

It has been interesting to follow the technology for developing software
for microprocessor systems because history has, to a large extent, repeated
itself. The use of machine language, assemblers, macroassemblers,
compilers, and debuggers bears a strong resemblance to their development
for larger computers two decades earlier. The reasons for this are
technological and organizational:

0 The first developers of microprocessors were technologists whose
principal expertise was in microelectronics, not software.



