SOFTWARE
DEVELOPMENT
and \[ANAGEMENT

for

MICROPROCESSOR BASED
SYSTEMS

Requirements
pecification

Design
pecification

ode and Debug -

Tomlinson G. Rauscher
Linda M.Ott

Maintenance

Software Development
and Management For
Microprocessor-Based

Systems

Tomlinson G. Rauscher
Xerox Corporation
Rochester, New York

Linda M. Ott
Michigan Technological University
Houghton, Michigan

Prentice-Hall, Inc., Englewc}od Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

RauscHER, TOMLINSON G. -
Software development and management for .

microprocessor-based systems. ;
Includes index.
1. Computer software—Development.

2. Microprocessors—Programming. 1. Ott,

Linda M., 1950-19 II. Title.

QA76.76.D47TR38 1987 005.26 86-30477

ISBN 0-13-822933-3

Cover design: Photo Plus Art
Manufacturing buyer: Gordon Osbourne

To David, Tasha, April, and Nathan

© 1987 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 5 43 21

ISBN 0-13-822933-3 025

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney
PrReNTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., T0kyo

PRENTICE-HALL OF SOUTHEAST AsIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRrRAZIL, LTDA., Rio de Janeiro

PREFACE

The purpose of our book is to describe a set of techniques for developing
software for large microprocessor-based systems, and for managing such
development activities. The book is practical in its orientation; it describes
a particular set of techniques that have demonstrably improved the
effectiveness of microprocessor development and management.

The topics of microprocessor software development and management

have grown in interest for several reasons:

(o]

Microprocessors are being used in a large and increasing number of
applications to provide greater functionality at a lower cost: consumer
products, appliances, automobiles, industrial control, personal
computers, office equipment, and so forth.

The software systems for microprocessors in such applications are
increasing in size, complexity, and sophistication, thus creating a
demand for more effective software development and management.

Many software developers of microprocessor systems have little
training in developing the large software systems that typify modern
microprocessor-based products.

Many managers of microprocessor-based system products have little
knowledge or experience in managing large software projects.

The software development cost for microprocessor-based systems is
large (often tens or hundreds of man-years), typically larger than the
cost of developing the electronic hardware on which the software runs,
and almost always larger than it should be.

Our book is intended for two principal audiences:

o)

Students at the upper class or graduate level who study
microprocessor software in electrical engineering, computer

xi

xii Preface

engineering, computer science, or related programs of study. Such
students seldom have the opportunity to work on large projects, and
thus lack the knowledge of a practical development environment to
which many of them will graduate.

o Industrial practitioners who want to develop and manage significant
microprocessor software activities. These professionals may have
experience writing small programs on microprocessors or writing
programs for large data processing systems. This basis coupled with
the information presented in our book provides strong capabilities for
developing and managing microprocessor-based systems.

We have used material in this book with hundreds of people in these two
groups, effecting substantial improvements in personal and corporate
capabilities.

We approach the subject of microprocessor software development
assuming that the reader has some knowledge of microprocessors and
programming. Readers should have a working knowledge of
microprocessors, have written small assembler language programs for a
particular microprocessor, and have done small programming projects with
a higher level language to understand the fundamentals of programming
concepts. There are a number of books that address such topics; our book is
a second book addressing advanced topics for large microprocessor-based
systems. Using introductory knowledge as a starting point, we describe in
Chapters 1 through 10 specific techniques for engineering significant
microprocessor software systems. The techniques cover the phases of
software engineering — requirements specification, design specification,
coding and debugging, testing, and maintenance — concentrating on
microprocessor applications with emphasis on real-time aspects. To
illustrate techniques, the examples used are short and address typical
microprocessor applications, so that they can be grasped quickly. The book
describes specific techniques that address the entire software development
life cycle for microprocessor applications, in contrast to surveying a large
number of techniques concentrating on one phase of software development,
or orienting the techniques toward business data processing applications.

In a similar manner, we approach the subject of microprocessor
software management assuming that the reader has some knowledge of
management activities such as general project planning, PERT methods,
task assignments, and delegation of authority. In the second part of the
book, Chapters 11 through 19, we address software management for
microprocessor-based systems by extending relevant aspects of traditional
managerial concepts such as planning, staffing, organizing, and reviewing

Preface xiii

to facilitate developing software for microprocessor-based products.
Facilities required for developing microprocessor software are described.
The special problems of managing embedded microprocessor software are
examined in detail. Recommendations are given for developing software
technology from both the practical aspects of architecture, tools, and
techniques, and the personal aspects of professionals who constitute a staff.
The book concludes with software management lessons that address
problems typically encountered when microprocessors play a significant
role in the product development repertoire in a company. The software
development of a real microprocessor-based product in a large company is
reviewed and critiqued.

In writing the book we have incorporated several concepts to increase
its utility to students and professionals. The book uses a practical technique
orientation to software development and management for microprocessors,
based on real product development experiences; it is not a survey of
theoretical concepts. The book concentrates on microprocessor examples; it
is not a general data processing book. It addresses life cycle aspects of
software development and management, not just the details of a
methodology to support one phase of product development. It describes
techniques that are integrated with one another throughout the
development process; it is not a collection of independent articles addressing
specific issues within the development process. The book is organized to
present material in the order engineers and managers will be comfortable
reading, building on coding and debugging knowledge and using this as
motivation for design, requirements, testing, and maintenance. As the
coding and debugging phase of software development is the phase with
which engineers and managers are the most familiar, we present it first,
even though it is neither the first phase nor the most important phase in
microprocessor software development. With a thorough understanding of
coding and debugging, readers will better understand the need for the
design specification phase and the requirements specification phase, the
most important phase in software development. The book also includes a
chapter that summarizes techniques for microprocessor development in
chronological order (Chapter 10) and a chapter that summarizes specific
management directions (Chapter 19).

Many people assisted us in the preparation of the book. Steve
Palumbo, Dan Auman, and John Kemp of Xerox Corporation helped with
the preparation of several figures on software design. William Stumbo of
Xerox assisted in the preparation of the index. Andrea and Roger Hopkins
of Publishease prepared many of the figures. Jeanne Paige of Xerox
Corporation typed several drafts of the book over an extended period; her

xiv Preface

patient competence made preparation of the manuscript enjoyable. Marie
Vasapolli and Nancy Taylor of Xerox made noteworthy contributions as
well. Finally we would like to thank our colleagues at Xerox Corporation
and Michigan Technological University for their encouragement and
support during this work. Their reviews and comments improved not only
the presentation but the substance of the book as well. Michael Nekora of
Xerox made several insightful comments, which we hope we have conveyed
to the reader.

CONTENTS

CHAPTER 1 - INTRODUCTION TO MICROPROCESSOR
SOFTWARE SYSTEMS DEVELOPMENT 1
1.1 The Role of Software in the Microprocessor Revolution 1
1.2 The Software Development Life Cycle 4
1.3 Microprocessor Software System Management 9
1.4 Anatomy of Software Systems for Microprocessors 10
1.5 Introducing the Rest of the Book 14

CHAPTER 2 — CODING MICROPROCESSOR SOFTWARE 15
2.1 Introduction 15
2.2 Selecting a Programming Language 15
2.3 Coding Techniques — Introduction 19
2.4 Coding Techniques — Presentation 19
2.5 Coding Techniques — Algorithm Implementation 26

CHAPTER 3 - DEBUGGING MICROPROCESSOR SOFTWARE 37
3.1 Introduction 37
3.2 Debugging Techniques 38
3.2.1 Instrumentation 38
3.2.2 The Debugging Process 39
3.2.3 Debugging Perspectives 46
3.3 Coding and Debugging Tools 47

CHAPTER 4 — DESIGN PRESENTATION FOR
MICROPROCESSOR SOFTWARE 52
4.1 Introduction 52
4.2 The Role of the Design Phase 52
4.3 Phases of Software Design 54
4.4 Design Phase Output 57

iv Table of Contents

4.5 A Note on Terminology 57
4.6 Design Presentation Overview 59
4.7 Graphical Displays 59
4.7.1 System Flow Diagrams 59
4.7.1.1 Data Flow Diagrams 60
4.7.1.2 Finite State Machines 64
4.7.2 System Structure Diagrams 66
4.7.2.1 Hierarchy Charts 66
4.7.2.2 Structure Charts 69
4.8 Textual Documentation of Design = 72
4.8.1 Program Design Languages 73
4.8.2 The PDL Language and Processor 73

CHAPTER 5 — DESIGN TECHNIQUES FOR
MICROPROCESSOR SOFTWARE 91
5.1 Introduction 91
5.2 Design Analysis 92
5.2.1 Analysis Using the Finite State Machine 92
5.2.2 Analysis Using the Data Flow Diagram 94
5.2.3 Analysisin Perspective 96
5.3 Design Synthesis — High Level Design 98
5.3.1 The High Level Design Process 98
5.3.2 Transform Analysis 100
5.3.3 Transaction Analysis 101
5.3.4 Coupling 104
5.3.5 Cohesion 106
5.3.6 Fan-Outand Fan-In 107
5.4 Design Synthesis — Detailed Design 108
5.4.1 The Detailed Design Process 108
5.4.2 Developing the Physical Program Structure 109
5.4.3 Describing the Top Modules in the
Physical Program Structure 110
5.4.4 Completing Module Descriptions 112
5.5 Design in Perspective 113

CHAPTER 6 — BASIC CONCEPTS OF REQUIREMENTS
SPECIFICATION AND ANALYSIS FOR
MICROPROCESSOR SOFTWARE 116

6.1 Introduction 116

Table of Contents

6.2 Characteristics of Requirements Specifications 118
6.2.1 Fundamental Characteristics
of Requirements Specifications 118
6.2.2 Readability Characteristics
of Requirements Specifications 119
6.2.3 Ease of Writing Characteristics
of Requirements Specifications 119
6.2.4 Feasibility Characteristics
of Requirements Specifications 120
6.3 Users of Requirements Specifications 122
6.4 Requirements Specification Process and Its Results 124
6.5 Requirements Analysis 129

CHAPTER 7 -~ SYNTHESIS OF REQUIREMENTS
SPECIFICATIONS FOR
MICROPROCESSOR SOFTWARE 130

7.1 Synthesis of the Functional Requirements 130
7.2 Writing the Customer Requirements Specification 131
7.3 Writing the User Manual 134
7.4 Synthesis of the Software Requirements 136
7.4.1 Introduction 136
7.4.2 Stimulus-Response Sequences 141
7.4.3 Other Requirements Specification Techniques 144
7.4.4 Recommendations on Preparing
Software Requirements 147
7.5 Synthesis of the Subsystem Software Requirements 147

CHAPTER 8 — TESTING MICROPROCESSOR SOFTWARE 149
8.1 Introduction 149
8.2 The Testing Process 151
8.3 Test Planning 151
8.3.1 Testing Phases 151
8.3.2 Approaches to Integration Testing 152
8.3.3 Documenting the Test Plan 155
8.4 Test Case Selection 156
8.4.1 Glass Box Testing 157
8.4.2 Black Box Testing 160
8.4.3 Testing by Program Modification 161
8.4.4 Test Case Documentation 162
8.5 Test Execution 162
8.6 Test Review 163

vi Table of Contents

8.7 Test Termination Criteria 164

8.8 Testing Tools 166

8.9 Testing in Perspective 168

8.10 Summary of Testing Principles 168

CHAPTER 9 — MAINTAINING MICROPROCESSOR
SOFTWARE 170
9.1 Overview of Software Maintenance 170
9.1.1 Maintenance of Software in a
Traditional Environment 170
9.1.2 Maintenance of Software in a
Microprocessor Environment 172
9.2 Reducing the Need and Time for Software Maintenance 172
9.3 The Maintenance Process 174
9.4 Managing Software Maintenance 176

CHAPTER 10 -~ SUMMARY OF MICROPROCESSOR
SOFTWARE DEVELOPMENT 178
10.1 Introduction 178
10.2 Requirements Specification 178
10.3 Design Specification 180
10.4 Coding 183
10.5 Debugging 185
10.6 Testing 188
10.7 Maintenance 189

CHAPTER 11 — INTRODUCTION TO MANAGING MICRO-
PROCESSOR SOFTWARE DEVELOPMENT 191
11.1 Preparation for Managing Microprocessor
Software Development 191
11.2 Planning Microprocessor Software
Development Projects 192
11.3 Organizing Microprocessor Software
Development Projects 193
11.4 Actuating Microprocessor Software
Development Projects 194
11.5 Controlling Microprocessor Software
Development Projects 195

Table of Contents

CHAPTER 12 — PLANNING MICROPROCESSOR SOFTWARE
DEVELOPMENT PROJECTS 197
12.1 Introduction 197
12.2 Initial Project Scheduling and Costing 198
12.3 Detailed Project Plan 208
12.4 Pitfalls to Avoid When Planning 214

CHAPTER 13 — STAFFING MICROPROCESSOR
SOFTWARE DEVELOPMENT PROJECTS 217
13.1 Introduction 217
13.2 Recruiting 217
13.2.1 Sources 218
13.2.2 Résumés 222
13.2.3 Interviews 223
13.3 Development 225
13.3.1 Motivation 225
13.3.2 Accessibility of Technical Information 229
13.4 Evaluation 229

CHAPTER 14 — ORGANIZING MICROPROCESSOR
SOFTWARE PROJECTS 231
14.1 Organization Theory 231
14.1.1 Functional Organizations 231
14.1.2 Project/Product Organizations 232
14.1.3 Matrix Organizations 233
14.2 Organization of Programming Teams 234
14.3 Software Organization Pitfalls to Avoid 237
14.4 Improvement of the Software
Organization Team Members 238

CHAPTER 15 - REVIEWING MICROPROCESSOR
SOFTWARE PROJECTS 240

15.1 Introduction 240

15.2 Phase Reviews 240

15.3 Formal Reviews 242
15.3.1 Characteristics and Objects of Formal Reviews 242
15.3.2 Rolesof Review Team Members 243
15.3.3 Selecting the Review Team 244

15.4 Informal Reviews 246

15.5 Role of Management in the Review Process 246

viii Table of Contents

CHAPTER 16 — FACILITIES FOR MICROPROCESSOR
SOFTWARE PROJECTS 248

16.1 Introduction 248

16.2 Computer Facilities 250
16.2.1 The Purpose of Computer Facilities 250
16.2.2 Computer Hardware Facilities 252
16.2.3 Computer Software Facilities 256
16.2.4 Integrated Computer and Support Systems 260

16.3 Office Facilities 262
16.3.1 The Purpose of Office Facilities 262
16.3.2 Offices 263
16.3.3 Office Complexes 264
16.3.4 Perspective on Office Facilities 266

CHAPTER 17 — INTEGRATING MICROPROCESSOR
SOFTWARE INTO EMBEDDED PRODUCTS 268
17.1 Motivation for Integration 268
17.2 Technical Direction in Integrating
Microprocessor Software into Embedded Products 269
17.2.1 Organizational Interfaces 269
17.2.2 Requirements Specification 270
17.2.3 Design Specification 271
17.2.4 Coding and Debugging 271
17.2.5 Testing 272
17.2.6 Maintenance 274
17.3 Interaction with Management in Integrating
Microprocessor Software into Embedded Products 275
17.3.1 Organizational Interfaces 275
17.3.2 Requirements Specification 275
17.3.3 Design Specification 276
17.3.4 Coding and Debugging 276
17.3.5 Testing 278
17.3.6 Maintenance 278

CHAPTER 18 — DEVELOPING MICROPROCESSOR SOFTWARE
ENGINEERING TECHNOLOGY 279
18.1 An Historical Viewpoint 279
18.2 Developing Microprocessor Software Methodology 280
18.2.1 The Fundamental Concept
of the Software Life Cycle 280

18.2.2

18.2.3
18.2.4

18.2.5

Table of Contents

Creating the Demand for Knowledge
of the Software Life Cycle 282

Developing Knowledge of the Software Life Cycle 283

Adapting the Software Life Cycle to Particular
Applications 283
The Role of Documentation 286

18.3 Developing Microprocessor Software Architecture 287

18.3.1
18.3.2

18.3.3

18.3.4
18.3.5

The Hardware/Software Classification 287
The Software Breakdown — Operating System,
Diagnostics, and Applications 289

Tradeoffs in Operating System

Design and Development 292

Tradeoffs in Diagnostic Design 294

Tradeoffs in Application Software Design 297

18.4 Developing Microprocessor Software Tools 297
18.5 Developing Microprocessor Software Personnel 301

CHAPTER 19 — SOFTWARE MANAGEMENT LESSONS

OR "WHY DOES SOFTWARE COST
SO MUCH AND TAKE SO LONG?" 304

19.1 The Problem 304
19.2 The Causes 306

193

19.2.1

19.2.2
19.2.3
19.2.4
19.2.5
19.2.6

19.2.7
19.2.8

The Fundamental Tenet —

Management Is the Problem 306

Managers Lack Software Knowledge 306
Managers Do Not Develop Viable Plans 307
Managers Do Not Staff Projects Properly 309
Managers Do Not Organize Projects Properly 311
Managers Do Not Provide Facilities

That Optimize Productivity 312

Managers Do Not Monitor Projects Properly 313
Managers Do Not Select the Proper Technology 314

Project Z — A Project That Cost Too Much
and Took Too Long 315
19.4 Improving Software Management 318

ANNOTATED BIBLIOGRAPHY 321

INTRODUCTION TO
MICROPROCESSOR SOFTWARE
SYSTEMS DEVELOPMENT

1.1 The Role of Software in the Microprocessor Revolution

The decade of the seventies will surely be remembered for witnessing the
commercial introduction and utilization of microprocessors. Not only did
their deployment revolutionize the use of electronics in a multitude of
applications, but their continued improvement demonstrated incredible
technological maturation. From the simple characteristics of the first four-
bit microprocessors to the sophisticated features of modern sixteen-bit and
thirty-two-bit microcomputers, the capabilities provided by these
microelectronic marvels have increased dramatically. While capabilities
have increased, the cost of employing these "computers-on-a-chip" has,
surprisingly, decreased when examined on a cost-per-function basis. The
increasing availability of capable, inexpensive microprocessors has
facilitated the development of increasingly sophisticated systems, ranging
from simple calculators to real-time systems that simultaneously support
several activities and input/output devices.

The ability of microprocessors to support complex applications has
been made possible not only by improved hardware capabilities such as
greater functionality of instructions, larger on-chip memories, and faster
instruction execution times, but also by larger, more powerful software
systems. Whereas the size of early microprocessor programs ranged only up
to a few thousand bytes, modern systems frequently reach fifty thousand

2 Chap. 1 Introduction to Microprocessor Software Development

bytes and more. The effort involved in developing software systems of such
capabilities requires technological knowledge, engineering discipline, and
management direction. The development of these capabilities often
proceeds at a slower rate than that of the microprocessor hardware
technology. When this is coupled with the realization that developing large
software systems for microprocessors is exponentially more complex than
developing small systems (with which people typically experience some
success in initial attempts), it is easy to see why software development has
been criticized for products that are expensive, late, and unreliable.

Microprocessor software systems development need not deserve this
reputation. With the appropriate application of engineering and
management tools and techniques, microprocessor software systems
development can be a rewarding and successful enterprise. The purpose of
this book is to assist in the accomplishment of this goal.

Itis appropriate to examine the historical background which has led to
the poor opinion in which software is often held today. Early microprocessor
software development activities tended to emphasize the differences from
traditional software development, citing justifications such as

o Close functional relationship to hardware being replaced
o Small program sizes

0 Use of low-level languages, particularly machine and assembler
languages

The current trend in microprocessor systems deviates from these
viewpoints:

o} Microprocessors are being used where flexibility and expandability
are required; specially designed VLSI chips and "programmable logic
arrays" are now being used to replace hardware of moderate
complexity where microprocessors were formerly used.

0 As mentioned earlier, large programs are as much the rule as the
exception.

o Higher level languages can, should, and are being used in most
microprocessor applications.

It is useful to note, however, that microprocessor software often exhibits
differences from the typical data processing programs, which constitute a
significant portion of traditional software systems. These differences
include the following:

Sec. 1.1 The Role of Software in the Microprocessor Revolution 3

0 Microprocessor software frequently represents only a small part of a
system composed of several electrical, mechanical, and other
components. The end user need not (and often is not) aware that a
microprocessor is integrated in the system.

0 Microprocessor manufacturers seldom supply extensive support
system software (although this trend is changing), and, as a result,
developers frequently must design and implement all the
microprocessor software for their system. This ranges from low-level
operating system tasks such as interrupt and I/O handling to high-
level application specific tasks.

0 Microprocessors often support real-time systems, wherein immediate
response to asynchronous external events characterize normal
requirements.

) The principal memory for program storage in many microprocessor
systems is read-only memory (ROM), due to its cost savings over other
memory types, such as electrically programmable ROM (EPROM) and
read/write random access memory (RAM). The cost per system aspect
is especially important when considering that microprocessor products
often have sales or usage volumes in the tens and hundreds of
thousands (such as calculators, automobiles, cash registers, and
games).

o Another aspect of products with imbedded microprocessors is that
companies often produce product families in which microprocessor use
may vary in only minor ways among products in the same family.

These variations on traditional software systems result in the use of tools
and techniques that are peculiar to microprocessor software development.
Much of the development activity for microprocessor software, however,
adapts techniques used in traditional software development.

It has been interesting to follow the technology for developing software
for microprocessor systems because history has, to a large extent, repeated
itself. The use of machine language, assemblers, macroassemblers,
compilers, and debuggers bears a strong resemblance to their development
for larger computers two decades earlier. The reasons for this are
technological and organizational:

0 The first developers of microprocessors were technologists whose
principal expertise was in microelectronics, not software.

