COMMUNICATING
WITH DISPLAY
TERMINALS

Roger K. deBry |

' COMMUNICATING
WITH DISPLAY
TERMINALS

Roger K. deBry

McGraw-Hill Book Company
New York St. Louis San Francisco Auckland
Bogotd Hamburg Johannesburg London Madrid

Mexico Montreal New Delhi Panama Paris
- 8do Paulo Singapore Sydney Tokyo Toronto

CONTENTS

S

iu

1. INTRODUCTION

2. REPRESENTING INFORMATION IN THE
COMPUTER

Decimal Computers and the Decimal Number System
The Biquinary Number System)

The Binary Number System

The Octal Number System

The Hexadecimal Number System

Negative Numbers

Floating-Point Numbers

. 3 CHARACTER CODES

Coded Number Systems
Weighted Codes
Unweighted Codes
Error-Correcting Codes
Character Coded Data
American Standard Code for Information Interchange
Extended Binary-Coded Decimal Interchange Code

CONTENTS

THE BASIC FORMATTING CONTROLS OF
ASCII AND EBCDIC 37
GETTING DATA INTO AND OUT OF THE
COMPUTER 49
Programfned 1/0 : 51
Outputting a Character 53
Inputting a Character 53
An Input Program 54
An Output Program - 55
An Interactive Program - 56
Interrupts : 65
Direct Memory Access 66
A SIMPLE DISPLAY TERMINAL . 69
Screen Editing Operations . 75
Edit Functions 75
Extending the ASCII Control Set : 81
ANSI X3.64-1979 : . 82"
Extensions to EBCDIC ’ ' - 87
TELEPROCESSING 89
Teleprocessing Networks _ : . 89
Network Topology . 90
Front-end Processors -~ 91
Line Types . . 92
Data-Link Controls : : 92
Start-Stop Line Control : . . 93
Communication Control Characters . 95
Point-to-Point Operation : 96
Multipoint Operation 98
Binary Synchronous Communication 99
Synchronous Data-Link Control ' 103
Systems Network Architecture) 108
Access Methods o 109
INTERACTIVE DISPLAY TERMINALS 113
The IBM 3270 Display Terminal . : to 120°

Buffer Addresses . 120

CONTENTS *

9.

10.

11.

Field Attributes
Protect/Unprotect
Alphanumeric/Numeric
Display/Selectable

Modified Data Tag

The Start Field Order .
Write Commands and WCC
Reading the Display

AN'INTERACTIVE APPLICATION

Selecting the Transaction
Mapping the Input Data Stream
Display Buffer Image
Table-Driven Mapping
Prompting the Operator
Mapping the Output Data Stream
Using Program Tabs
Reusing the Same Format

ATTRIBUTE EXTENSIONS IN THE iBM
3270 DATA STREAM

Extended Field Attributes
Changing Field Attributes
Modifying Attributes
Character Attributes
Inbound Data Streams

Field Mode Operation

Extended Field Mode

Character Mode
Mapping with Character Attributes
Using Extended Attributes

STRUCTURED FIELD DATA STREAMS

Creating a Partition

Programmed Symbol Sets
Programmed Symbol Data Formats
Color Planes and Programmed Symbols

Extended Form of Load Programmed Symbols Structured

Field :
Query and Query Reply
Query

124
125
127
129
129
130
132

© 136

141

142
144
145
1561 -
154
156
158
159

81

164
167
174
177
185
137
188
189
191
194

199

202
212
216
219

221
223
223

viii

Quary Repiv
Color Query Reply
tJsing the Query Reply Information

12. INTERCHANGE DATA STREAMS

Data-Processing Applications
Word-Processing Applications
Future Data-Stream Directions

BIBLIOGRAPHY

INDEX

CONTENTS

N O I3
[RSRNT V)
e

o)

229

231
235
239

241

245

1
INTRODUCTION

This book deals with communication in the context of an information-
processing network, as exemplified in figure 1.1. Such a network can be
characterized in a number of different ways. Physically, it is simply a con-
nection between two end users of the network. Logically, a network is
characterized by the set of functions which it provides. Network functions
are most often described in terms of a set of architected layers. An exam-
ple of this, shown in figure 1.2, is the Open Systems Interconnection (OSI)
architecture model defined by the International Organization for Stan-
dardization {ISO). ;

The lower layers of the OSI model provide for the transmission of elec-
trical signals, the control of data circuits, the transfer of bits, and the reli-
able transfer of blocks of information between adjacent nodes in the net-
work. The intermediate layers provide for the routing of data through the
network, optimization of network resources, and recovery. Although we
will touch upon many of these subjects to add perspective, the focus of
this book will be upon data streams, the flow of data formats and codes
between presentation layers of the network.

There seem to be two significant forces which drive the definition of
device data streams. The first of these is historical: that is, with what
existing code standards, devices, or software must the data stream work?
Much of the data-stream architecture in existence today refects direc-

2 COMMUNICATING WITH DISPLAY TERMINALS

HOST // HOST
b Enn
T TERMINALS

KOS"]'

+

TERMINALS
figure 1.1 An information-processing network.

< Application I.ayar———-;———?
< Presentation Layer—m >
<~-————-Session Layer——mm—m——>
< Transport Layer—mm———>

Network Layer—M8M8MM————>

< Data Link >

< Physical >

Physical Connection Medipg

figure 1.2 Open Systems Interconnection model.

tions which were set in the beginnings of the data-processing industry.
Thus it is important to understand these early beginnings and how they
may affect the definition of new data streams.

The first information-processing network was probably created when
primitive people used resonant logs to communicate over long distances.
Later it was found that animal membranes stretched over the ends of the
logs could produce a more distinctive sound. Some tribes used male (or
low-pitched) drums in combination with female (or high-pitched) drums
to encode their messages. Other primitive people used reed pipes, whistles
made of bone, and rams’ horns to communicate. These early communi-
cation systems had one thing in common: the use of “coded” information,
where particular sound patterns carried predefined meanings to the
listener.

INTRODUCTION 3

The earliest attempts to transmit information through electrical means
were made by Stephen Gray in 1727 and Charles Francis Dufay in 1733.
The object of these experiments was really to determine the distance elec-
tricity could be transmitted, rather than to trensmit information. The
development of the Leyden jar gave impetus to such experiments, and in
1747 Sir William Watson succeeded in discharging a jar and measuring
the effect over almost 2 miles of iron wire supported on poles.

Early experiments in telegraphy were based on the use of such high-
voltage schemes and electrostatics to transmit information. For example,
Morrison is credited with having suggested the first telegraph system in
1753. A separate circuit was used for each character to be signaled. A fric-
tional generator was to be connected at the sending end, and small pieces
of paper would be attracted by suitable electrodes at the receiving end.

The development of electromagnetic telegraphy came later, only after
several other significant developments:

In 1800, Count Alessandro Volta produced the battery, making contin-
uous current available for the first time.

In 1819, Oersted found that a magnetized needle would be deflected
from its normal position when brought close to a wire that carried
current.

André Marie Ampére, studying eléctromagnetism, proposed the use of
magnetic needles and coils for the reception of signals. His first tele-
graph system employed a pair of line wires for each character to be
sent, much like the earlier electrostatic systems.

In 1825, William Sturgeon developed the electrom;ghet. The magne-
tized bar rang a bell and transmitted intelligence by code.

In 1832, Samuel F. B. Morse was returning from Europe aboard a ship
when he overheard a conversation describing the development of the elec-
tromagnet. This discussion excited his imagination, and upon his return
home he began work on a telegraph system using this principle. By 1835
he had developed the first working model of his telegraph. By 1838 he had
developed a code for use in transmitting messages, and in 1839 he trans-
mitted the first message over his telegraph system. The first commercial
telegraph system, set up by Morse in 1843, linked Baltimore and
Washington.

Early telegraph systems had a signal speed of about 2 characters per
second. In 1874, Jean-Maurice-Emile Baudot invented a scheme which

zllowed 6 communication channels t¢ be combined on a single physica!
link. Two years later, Alexander Graharm Bell spoke his first sentence over
the telephone. Telephone lines were first constructed in the 1890s. In 1913
vacuum-tube repeaters were introduced into telephony. In 1918 the first

4 COMMUNICATING WITH DISPLAY TERMINALS

carrier system allowed several voice channels to be carried over a single
wire pair. '

Today, in the United States a single high-capacity coaxial cable or
microwave link can transmit thousands of voice channels. In a hundred
years, the capacity of communications systems has increased from 2 char-
acters per second to over 100 million characters per second. The future
will certainly bring laser communications systems capable of transmitting
billions of characters per second. :

It seems, then, that we have developed a tremendous ability to transmit
great quantities of information and will be able to transmit much larger
quantities in the future. Unfortunately, our capacity for absorbing all this
information and making it useful to us is severely limited. In 1945, Dr.
Vannevar Bush concluded in an article in the Atlantic Monthly that
research was being bogged down because of the vast quantities of data
through which researchers had to sort. Now, several decades later, the
body of knowledge in the world is said to be doubling every 5 years. With-
out the aid of machines, computers—which have a far greater capacity to
consume and digest information than we have—we cannot begin to cope
with the mass of information we must understand.

The large-scale use of computers in information-processing networks
began in the mid-1950s, when it was recognized that teletypewriters could
be used for transmitting data to and from the computer. This allowed
more people to interact with the computer and introduced the concept of
timesharing—a technique that enables many people to use one computer
simultaneously on different problems, whether the computer is in the
same room or hundreds of miles away. The first data streams, then, were
born in this environment and were based upon the communication codes
developed for teletype equipment.

The second force driving data-stream architecture is the requirement
to provide the richest possible set of data-presentation functions, consis-
tent with available technology and permissible costs. The functions avail-
able on today’s display terminals would not have been thought possible
20 years ago. The ability to mix graphics, color, and advanced presenta-
tion and processing functions in the terminal gives the software developer
a powerful set of tools to use in presenting data to the terminal operator.
The terminal’s data stream is the vehicle which the application program
uses to communicate this rich set of functions to the display terminal.

. We have recently experienced a great change in the data-processing
industry. Technology has allowed computer manufacturers to shrink the
gise and cost of the computer, and it is not difficult to foresee a time when
every office and home will have a small computer or a computer terminal
of some kind. These will provide acoess to multiple private and public
databases, allow us to solve complex problems—displaying the solutions

INTRODUCTION 5

in color and graphic pictures, perform word-processing tasks, keep our
grocery lists, and balance our checkbooks. The terminal becomes a win-
dow into the information processed and stored in the computer. This win-
dow may be very opaque or very clear, depending upon the capabilities of
the terminal and the way in which the data is presented. A key element
of this interface is the definition of the terminal’s data strgam. A proper
set of terminal functions, and proper programming of the interface
between the computer and the terminal, will provide a way for us to look
clearly through this window and gain maximum benefit from the infor-
_mation stored in the computer.

This book attempts to develop the concepts of display terminal data
streams from these two perspectives. The reader will not simply learn the
bits and bytes that make up the data streams but will alse gain some
appreciation of why data streams are defined as they are and of how appli-
cation programs should be structured to take maximum advantage of the
terminal’s capabilities. Thus this book will serve as a useful tool not only
to those who may develop terminal systems but also to those who will
write application programs which use them.

2

REPRESENTING
INFORMATION IN
THE COMPUTER

If the computer terminal were literally a window through which we could
look into the computer’s memory, most of us would find it very difficult
to understand what we saw (see figure 2.1). Modern computers store infor-
mation using bistable storage elements; that is, they are capable of being
in one of two states. Thus what we would see if we could look directly into
the computer memory would be a series of these storage elements, some
of which would be in the 1 state and others of which would be in the 0
state. Looking through such a window, could you understand the follow-
ing message?

100100010011111010111010000010000001b10010
100030101000001011001100111110101010111%11
1160011010060111100101010000011101010001011
010000101000001010010000101001101000010101
010010106101110101111111010100001011010100
111111110011110100001016801001000001111101

Probabl, not! In any communication system, the information to be
excharged must be in some form that is understood by both the sender
and the receiver. If I speak German and my friend speaks French, either
I must also speak French or my friend must also speak German in order
for us to communicate. When we communicate with a computer, we face
a similar problem. As you can see from the above example, if we had to

7

. 8 COMMUNICATING WITH DISPLAY TERMINALS

figure 2.1 Close-up view of a memory chip. (Repro-
duced by permission of International Business
Machines Corporation.)

communicate with the computer using only the digits 1 and 0, we would
have a difficult problem indeed. Fortunately, in modern computer sys-
tems, a computer program most often translates this internal represen-
* tation of data into a form more understandable to the terminal operator.

DECIMAL COMPUTERS AND THE
DECIMAL NUMBER SYSTEM

The number system most familiar to us is the decimal number system, so
called because the base or radix of the number system is 10. The decimal
number system has 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Modern number
systems use a positional notation, in which the meaning of a particular
symbol, or digit, is modified by its position in the number. In the decimal
number system, the digits are modified by powers of 10, according to their
position, as shown:

hundred’s position

ten’s position
l [———one’s position

123

REPRESENTING INFORMATION IN THE COMPUTER 9

In this example, the digit 3 is in the one’s position, the digit 2 is in the
ten’s position, and the digit 1 is in the hundred’s position. This means that
there are 3 ones in the number, 2 tens, and 1 hundred. Let’s verify this:

1 X 100 = 100
2X 10= 20
3X 1=:3

100 + 20 + 3 = 123

We can write this in a slightly different manner, to better reflect what
we mean when we talk about a base 10 number. Remember that any num-
ber raised to the zero power is equal to 1!

123 = 1 X 10° + 2 X 10" + 3 X 10°
=1X10X10+2X10 +3X1°
= 100 + 20 +.3
= 123

(N S e
PR <4

ke

f
T
!
|
23
l
[
{
!

S . .\ s Oy

PSS - SN AR S

.
%

figure 2.2 Charles Babbage’s Difference Engine. (Reproduced
by permission of International Business Machines Corporation.)

10 COMMUNICATING WITH DISPLAY TERMINALS

figure 2.3 Pascal’s Pascaline. (Reproduced by permission of International Busi-
ness Machines Corporation.)

Every calculating machine stores numbers by setting some storage ele-
ment into one of several possible states. Early calculating machines
depended upon mechanical storage elements such as wheels or shafts, as
shown in figures 2.2 and 2.3.

These mechanical devices were typically decimal, and their storage ele-
ments were capable of 10 states, representing the decimal digits 0 through
9. The use of the decimal number system was carried over into early com-
puting machines which used mechanical relays and vacuum tubes as stor-
age elements (see figure 2.4). Since these are bistable devices—i.e., they

TS

figure 2.4 Vacuum-tube storage elements. (Reproduced by
permission of International Business Machines Corporation.)

REPRESENTING INFORMATION IN THE COMPUTER 11

may assume one of two stable states—the representation of a decimal
number requires the use of 10 such storage elements per decimal digit.
Thus the element representing the value of the required digit would be
turned on, and the others would be turned off.

This is illustrated in figure 2.5, where a set of 10 switches represents a

0123456789 0123456789
ON ON |
0000000000 0000000000 = 8 (base 10)
OFfF [I11IT1HI OFF |11]
figure 2.5 Representing a decimal figure 2.6 Representing the digit 8
digit with 10 storage elements. with 10 storage elements.

0123456789 0123456789 0123456789

ON | | |
0000000000 0000000000 0000000000
OFF | JIIITITE (AARARAE RNRRARAI
= 1 2 8 (base 10)

figure 2.7 Representing the decimal digit 128 with
three sets of 10 storage elements.

figure 2.8 ENIAC. (Reproduced by permission of International Business
Machines Corporation.)

