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2 Computer Modeling of Complex Biological Systems

I. INTRODUCTION

Simulation and modeling are important investigative techniques in any research activity
for they provide a methodology for the design, development, experimentation, analysis, and
evaluation of an experiment under study. Simulation which in plain words mean feigning
of a particular situation provides a common base of techniques for the study of a diversity
of projects and is a means for investigating a large number of ill-defined but solvable
problems. Simulation provides a challenging atmosphere which is conducive to problem
solving although it approximates the actual structure of the system. Simulation may be
carried out either with a digital or an analog computer. Analog computers are mostly used
for the study of behavior of mechanical systems and as such their use is limited to problems
related to mechanical and/or electrical engineering. Digital computers are electronic data
processing devices with incredible speed. Consequently, they have wide applications in
biology, chemistry, agriculture, sociology, and in other branches of natural sciences and
humanities. Hybrid computers which are a combination of both analog and digital could be
used to simulate more complex problems. Computer systems, whether analog, digital, or
hybrid, because of their high degree of modularity and collective complexity are natural
objects of simulation models. For example, a month of computer processing can be simulated
depending upon the complexity of the model on one computer run of less than 30 min.

The heart of simulation is the precise mathematical description of the system to be
simulated. There are many reasons why a mathematical expression is preferred to a verbal
explanation to describe a system. One reason is that several systems involve many different
processes occurring simultaneously. The natural language is limiting when used for math-
ematical description of the system. Many of the most important behavioral aspects of complex
systems such as nonlinearity, redundancy, and hysteresis cannot be explained in verbal
terms, whereas a mathematical description of these concepts is often both compact and
precise; this can be illustrated with a few examples.

Suppose we are interested in building a mathematical model which can predict the pop-
ulation growth of a particular town or city. The town or city in this instance can be considered
as a biological system and let ‘‘N’’ be the number of people at a given time, *‘t’". Then
the rate of growth of the population with respect to time, is dN/dt. The rate can be calculated
in a different way. Let us assume that there are no exogenous variables such as war, famine,
or pestilence affecting the system. Under these assumptions, the rates of increase by birth
and decrease by mortality are constant. Obviously the number of births is proportional to
the number of people alive, similarly the number of deaths. If the birth rate is “‘b’” and the
death rate is *‘d’’, the total number of births is b.N and deaths is d.N. Therefore, in a time
5t, we have (bN.dt) and (dN.3t) births and deaths respectively.

The change in population = 3N = (bN3t — dN.8t)

%j—=(bN——dN)=(b—d)N=aN

dN/dt = aN, where a is the excess of the birth rate over death rate.

A mathematical model similar to the one above can be constructed for any biological
system where natural growth or decay occurs. Consider the production of certain antibiotics
produced from bacterial cultures which are grown in controlled conditions. The growth of
bacteria or microorganisms is governed by the same natural formula:

(dN/dt) = oN
dN/N = adt
logN = at + ¢

N — eut+c — ec = Aem
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To evaluate the constant A, we use some unknown initial conditions: Say N = N, when
t=20

I

No
N

Ae® = A
Noeal

it

This is an exponential law (+ ve index), and so the rate is ever increasing. In the real
world situations, these assumptions may not hold.

A second example to demonstrate the application of mathematical modeling in biological
systems is the growth of bacterial cells in a culture medium. Suppose, the number of bacteria
in a culture medium grew at a rate proportional to the number present initially. If in an
experiment, it was observed that in 1 hr the number grew from an initial 100 to 332, and
we are required to build a mathematical mode! to predict the number of bacterial cells at
the end of 1'/, hr, then, let at time ‘‘t’’, the number of bacteria be ‘‘x’’; dx/dt = rate of
bacterial growth; this rate is proportional to the number of bacteria present, namely *‘x’’ is
positive. So, we have,

dx/dt = kx; x = AeM 1)
Initially it was 100; t = 0, x = 100) )
It grew to be 332, in 1 hr; t=1,x = 332) 3)
To find the number, whent = 1.5 (4)
100 = Ae™ A = 100; x = 100 e &)
322 = Aekt = 100 e5; ex = 3.32 6)

Whent = 1.5, x = Ae"¥ = 100e'%* = 100 (3.32)%
log,, x = 10g 100 + (3/2)log (3.32) = 2 + (3/2)(0.5211)
=2 + 0.7816 = 2.7816

X = 60.47 = 605

In the preceding paragraphs, we have often used the word *‘system’”. An understanding
of the meaning and characteristics of a system is approriate before we talk about “‘system
modeling”’.

The term system is used in various ways by various people to cover many uses under
differing contexts. However, in broad terms, a system may be defined as that arbitrarily
chosen portion of space which is under discussion. All else is called the surroundings. The
system is separated from the surroundings by either an imaginary or a real boundary line.
To avoid uncertainty regarding what is specified as the system, its boundaries must be
defined precisely. This decision may depend upon the purpose of the study. Closed systems
are those across whose boundaries matter does not pass; in open systems matter does pass.
The state of a system is fixed by describing the properties of the system at any given time.
A process is said to occur in a system when any sort of change or transformation takes
place. These changes are due to certain interactions taking place among various entities
within the system. An entity in a system is defined as an object of interest which has separate
existence. The property of an entity is called its activity. Therefore, the state of a system
at any given moment can be defined as the description of all entities, attributes, and activities
of that given system. Activity in any process is that which causes change in the system.
During the process, the system changes from an initial state to final state through a series
of intermediate states. These series of intermediate states are called the paths of the process.
Anything that crosses the boundary line and enters into the system is called the *‘input”
and the ones that leave the system are called the “‘output’”. When the activity that causes
change within the system can be described in terms of its input, the activity is called
deterministic whereas stochastic activities are those which vary randomly and the output is
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not characterized by the attributes of the input. If the rate of change in a system over a
period of time is constant, it is called a continuous system and if changes are discontinuous,
they are called *‘discrete systems’’. Free systems are either wholly continuous or discrete.
A homogeneous system is one in which the attributes of the entities are the same throughout
and in a heterogeneous system the attributes of the entities vary from point to point. En-
dogeneous variables account for the activities of entities within the system and exogeneous
activities are from entities outside of the system. Open systems have exogeneous activities
and closed systems have endogeneous activities.

A. System Modeling

Modeling may be defined as the construction of a prototype, either mathematical or verbal,
which approximately describes the behavior of a system under study. Behavioral models
are especially needed where experimentation is physically or economically not practical,
such as a situation study which has not been completely defined or a plan which is yet on
a drawing board. There are two approaches to the study of behavior: one is experimental
performed in a laboratory and the other is modeling. The models should be as abstract as
possible and still be predictive. In other words, a model is something that mimics closely
and foretells the relevant features of a system under consideration. The performance of a
model is measured by the accuracy with which the model can predict the characteristics
when applied to the system for which it was designed to handle. Accurate prediction by the
model is affected to different degrees by numerous factors such as (1) proper design which
includes proper specification of the system, surroundings, and the boundary lines and (2)
identification and definition of individual and interrelationships of endogeneous and ex-
ogeneous entities some of which may be dependent variables and other independent variables.
Absence of any information which is essential for construction of the model will lead to
certain assumptions being made. The conclusions drawn from such a model will be greatly
affected by the kind of assumptions made and also the input which enters into the system.
A false or an unrealistic assumption leads to wrong or invalid conclusions. In brief, it can
be stated that the main function of a model is to predict the performance criteria of a system
under a set of conditions. Other benefits of modeling include: the design of meaningful
laboratory experiments, evaluation of conflicting experimental results, and possibly offering
an explanation for the differing results. If properly executed, a model should be much more
efficient than either a theoretical or experimental process taken alone.

B. Model Types

Models are mainly classified into two groups: (1) physical and (2) descriptive. Descriptive
models may be expressed in native languages or in terms of mathematical symbols to describe
the status of variables in the system and the way the variables change and interact. Math-
ematical modeling needs a good knowledge of calculus.

Physical models are based on physical properties or comparison between mechanical,
physical, or electrical systems and may be floor plans of a home or an industrial complex,
pilot model plants of a distillation column, or instruments or means to measure the mechanical
properties of a material. The advantage of a physical model is that it can be explained to
any individual with limited technical knowledge. However, physical models are expensive
to build, have limited use in that the model can be used only for the particular problem for
which it was designed, and offer very narrow and unimaginative information to the decision-
making process. Verbal descriptive models have limited communication and sometimes
cannot be replicated. However, these models are the least expensive and so have found
common uses in the decision process. Mathematical models mimic the conditions of a system
in mathematical language or in precise mathematical formulas, which are concise and can
be manipulated with ease. Besides, mathematical modeling can use numerous theorems
which are available and can use high speed computers for quick calculations. Theorems are
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useful in drawing conclusions from simple models and computers are useful in drawing
specific conclusions from complicated models. Furthermore, mathematical analysis of a
system facilitates the construction of a tentative hierarchy, whereby each of the dependent
and independent variables are rated according to the degree of their activity on the system.

Here, we are exclusively concerned with only mathematical models based on digital
computers of certain complex biological systems.

C. General Methods in Building a Model

Modet building is as much an art as it is a science. It involves intuition, imagination, and
skill. It is impossible to state a set of rules to build a mathematical model as much as it is
not possible to draw a picture or paint a landscape following a list of regulations. It depends
upon the viewpoint and judgment of the modeler to decide which information should be
included or emphasized and to what extent in the model. However, it is possible to offer a
set of guidelines or a framework around which the modeler can develop and improve his
skill and imagination to build a model. Besides, experience and common sense are the other
ingredients of a good model process. The guidelines or framework are very general and
applicable to most systems. The specific characteristics of each system determines its own
framework which should be explored by the modeler himself. The following are some of
the considerations to be remembered prior to any modeling process:

1. Understand the system and its components of which the model is to be built. These
include the system structure, the system entities and their activities on the system
undergoing a change or transformation, interrelationships among various entities, de-
pendent and independent variables, system boundary and its surroundings, exogenous
and endogenous parameters, etc.

2. Define in clearly understandable language the objectives of the model, what it is
supposed to accomplish, what data are given, and what additional data or information
is needed.

3. Review your model building methodology more than once and obtain an answer as to
the method under consideration will accomplish the objectives for which the model is
to be designed.

4.  Make a thorough literature review on system models to determine whether any modeling
or approaches suggested by other investigators for systems which are closely similar
to having analogous characteristics of the system under consideration. A good literature
review process should not only benefit the modeler in having a better grasp and
understanding of the system under his consideration, but also will forewarn him of
some of the obstacles, bottlenecks or surprises which he may encounter.

5.  Classify and formulate the given data. Wherever possible, reduce the verbal data into
mathematical or statistical symbols or formulas. Sort out the relevant data, facts,
information, or logical parts of the problem from the superfluous.

6. Examine what mathematical or statistical theory or law is applicable to process the
given data and to arrive at a solution.

7. Identify what additional data are needed and how and where to go about getting these
data to complete the model.

8.  If the modeling process involves a large complex system, try to individualize parts of
the problems which may finally lead to one comprehensive answer. In order to do
this, divide the large system into smaller blocks and represent the interrelationships
of the sub-blocks by arrows. Such a pictorial block-arrow diagram of a complex and
large system will facilitate easy understanding of the complexity of the system.

9. Check each sub-block or part of the system for its characteristics, its significance in
the overall problem, its logical position in relation to other sub-blocks, its individual
contribution in the final solution, and to what extent the individual sub-blocks affect
the quality of the final model designed.
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10.  Synthesize results of each part of the model to verify whether the final model corro-
borates the individual solution.

11.  Pay particular attention to the fact that the model proposed is sufficiently flexible to
accommodate varying input/output data.

12.  Establish the accuracy of the model needed. It should be useful, feasible, and fit the
situation.

13.  Test the model and obtain some predicted values. Validate the model by comparing
the predicted with true or experimental values. If the difference is too large or statis-
tically significant, work backward to modify or refine the model. If there are no
mathematical or logical errors and if the model is less accurate than anticipated, check
your assumptions to make certain that they are valid.

14. Always indicate the limits of the model so that the person who uses the model is aware
of the restrictions of the model.

This preceding information is presented for the benefit of biologists who may not be
familiar with certain simulation and modeling terminologies. The rest of this chapter is an
overview of areas in biology in which computers can be used to manipulate and analyze
enormous amounts of complex data.

II. OVERVIEW

A. Computers in Ecology

There are two principal ways in which computers can be utilized to study ecology. First,
computers may be used for data storing, correlation, and statistics. Because ecology deals
with such exceedingly complex systems of organisms, it yields data in bewildering richness.
Under the best of circumstances, the analysis of this data can be so time consuming as to
be practically impossible if one has to analyze it using nothing more sophisticated than, say,
a desk calculator. Modern computers have changed this. Now, more and more ecological
data are being obtained in a form that can be fed directly into a computer for analysis. The
availability of machines that are capable of handling large amounts of data has removed
much of the barrier to considering highly complex systems but, needless to say, it has not
eliminated the necessity for the researcher to know precisely what he is attempting to learn
from his ecological data. On the contrary, the computer has placed more of a burden than
before on the ecologist to formulate his questions in a very precise way. One suspects,
perhaps, that this secondary effect is at least as important to the study of ecology as the
more obvious one of allowing the ecologist to analyze heretofore unassailable quantities of
data.

The analysis of models is the second and, perhaps, more interesting way in which a large
computer can be of assistance to the ecologist. Much work has recently been done on the
problem of reducing ecological problems to problems in mathematics, that is to say, to the
construction of mathematical models. Because problems in ecology are themselves so com-
plex, the models based on the ecological system are also exceedingly complicated. Hence,
the analysis of these models has depended in great part on modern computers.

For example, one might be interested in the fluctuation of a certain population of organisms
as a function of the food supply and the predatjon. At first glance, this might seem quite
simple. As the food supply increases, it is certainly reasonable to expect that the population
will increase. On the other hand, an increase in the number of predators will tend to decrease
the population. Hence, one might obtain a set of mathematical expressions that serve to
describe how the population under study varies with the food supply and the number of
predators. But even such a simple-sounding model might, in fact, turn out to be quite
complicated if one requires, as one should, that the model be capable of predicting results
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that can actually be observed in the field. For example, an increase in the population of a
certain species often heralds an increase in the populations of the species that prey upon the
given organisms. It has been documented, for instance, that the populations of snowy owls
in the arctic increase during times when lemmings are in abundant supply. And, another
consideration: not only is the population dependent upon the food supply, but the food supply
per individual is usually dependent upon the population. For example allowing too many
sheep to graze on a certain tract of land may kill the grass. And finally, even if the food
were in unbounded supply, the territory available to the population is usually not. For
instance, it has been observed in some rats that over-crowding can cause a decrease in the
population. Hence, constructing a model, which at first glance seemed childishly simple,
turns out to be in reality very complex. In the actual construction of any model that is to
represent a complicated system, it is safe to say that a considerable period of trial and error
ensues before the model begins to predict what can actually be observed. In other words,
it is usually necessary to make a number of adjustments in the model before it becomes a
reasonable one. Therefore, it is very helpful if one can quickly obtain the effect that varying
one of the parameters in a model will have on the model. For this reason, a computer that
can, for example, plot the predicted population of a certain species is very useful.

Let us illustrate with an example how modeling can be helpful in predicting the population
of a country with some given data. Suppose, it is known from a census data that the population
of a particular country has doubled itself in 40 years and we are required to build a math-
ematical model which can predict a number of years at the end of which time the population
will triple. Assume the law of natural growth applies. At time *‘t”’, if the population is
“N”’, then:

(dN/dt) = k.T; N = N, e® (D

Here, t = 40, N = 2N,, 2N, = N,.e.40.k; e** = 2 )
When N = 3N,, required to find “*t”’
3N, = N, e¥; e = 3; kt = log?

Also, e** = 2; 40 k = log?
o (1.0986)
Hence, kt/k.40 = log 3/log 2; t = ©.6931) 63.2 years

If you want to change the assumptions regarding, say, the change in the population of
the predator as a function of the change in the population of the organism under study, then
you can quickly see the change that the model predicts in the population under study.

B. Computers in Physiology

As in the case of ecology, computers are used in the physiological sciences to analyze
experimental data and to evaluate models.

For example, one can extract from data the kinetic constant that relates the rate of reaction
to the reactant concentration. Here, the trick is to fit the constant to the experimental data
in such a way as to minimize differences between the experimental curve and the appropriate
enzyme rate equation. In addition, computers have proved useful in the analysis of results
that deal with very complicated metabolic and physiological problems. One such example
is the flow of material through branching pathways and across cellular membranes. In many
cases, these processes are fairly well understood only on the cellular level. Computers appear
to be of great service in extending our understanding to the indescribably more complex
case of a multicellular organism. Finally, computers are of great importance in the construc-
tion and evaluation of physiological models.
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While it is true that any model that can be analyzed on a computer can also, in principle,
be analyzed via manual means, the time required for the latter may make it a practical
impossibility. And even if it is possible, the time required may be so great as to severely
limit the number of alternative models that it is practical to evaluate.

One can quickly appreciate the utility of a computer-borne model by a considerably very

simple case of a hypothetical metabolic pathway consisting of several reactions as shown
diagrammatically by

2 3
AFZTBSTCE

Imagine, furthermore, that each of these individual reactions is well understood, that is, the
values for maximum velocity and Michaelis constant, k_, are known. We simply want to
know if the pathway is as drawn, that is, is it a nonbranching series in the order shown?
This may be accomplished by comparing the rate of flow through the sequence (which is
measurable in the laboratory) with the predicted rate under a variety of conditions. We
obtain the predicted rate by solving a set of enzyme rate equations that take into consideration
the fact that the product of one reaction is the substrate for the next. We might begin by
making the steady-state assumption; i.e., we assume that the concentrations of the inter-
mediates remain constant with time. This would require that the rate of formation and
breakdown of each intermediate be the same and would therefore greatly simplify things.
Under these conditions, we could, perhaps, make our calculation with or without the use
of a computer. We would then want to abandon the steady state assumption and introduce,
instead, possible branches in the chain or alter the properties of some of the enzymes. One
would probably want to alter more than one variable at a time. This would make the use
of computer more essential.
Consider the formation of lactic acid according to the following reaction:

CipHppOyy +H;0 —— le;:zt?:;e —» 4 CH,CHOHCOOH
milk sugar
A + (B » (O

For industrial purposes lactic acid is either isolated from sour milk or made by bacterial
fermentation. From the point of view of a biologist, lactic acid is very important. It has
been called *‘the keystone of muscular activity’’. The energy necessary for rapid muscular
action appears to be supplied by the decomposition of glycogen to lactic acid. Suppose, we
are required to build a model of a bimolecular reaction such as the one shown above, we
can begin as follows:

Let us assume, to begin with, there are ‘‘a’” molecules of ““A’’ and ‘‘b’’ molecules of
““B”’ present in the system. A and B combine to form C. At a time *‘t’” let “*N’’ molecules
of C be formed. This is formed by using up N of A and N of B. So, there are (a — N) of
A and (b — N) of B left over.

The rate of formation of *“‘C’’ molecules is proportional to the product of the number of
molecules of each substance present.

(dN/dt) = k(a — N)b — N)

@™ dt;, [ o t + constant
(a— N)b -~ N) (a— N)b — N)
t+ (E) = 1/(a — b) [[(1/(b — N) — 1/(a — N)] dN

(a = N)

“@-b Fb-N
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where T = 0, we have N = 0; (E) = 1/(a — b) log (a/b) substituting for the constant E,
we have

1 1 (a—N)
t + ——— 1 ab) =
@ - p 8@ =l T

1 b(a — N)
@-1b) Bab - N)

Likewise, if we try to be so specialized, we could speak on the subject of drug-receptor
interaction, and the role of the computer in such a process.

C. Computers in Drug-Receptor Interaction

It was well known that animal cells are bounded by membranes which, apart from anything
else, prevent the inner contents from spilling out. The membrane is, however, far more than
a passive constraining skin: it is a dynamic structure which controls the passage of chemicals
into and out of the cell. Furthermore, it is also responsible for detecting the presence of
certain signals such as hormones and for passing on the appropriate message to metabolic
machinery of the cell.

Hormones are in the business of communication at the cellular level: they have often been
called chemical messengers. They are secreted into the blood stream by specialized glands
and exert their effects on particular ‘‘target’” tissues. Hormone molecules, such as the
catecholamines and the protein and glycoprotein hormones have very definite molecular
shapes, and their target cells are those which have on the surface of their outer membrane
specific receptors for these hormones. Each type of receptor is absolutely specific for binding
only one type of hormone. And each cell type in the body has its characteristic hormone
receptors. Many hormones, neurotransmitters, drugs, and cellular toxins initiate their action
via specific interactions with plasma membrane receptors.

At the present time, the study of hormone receptor mechanisms is entering an exciting
phase. Classical receptor theory gives a mathematical description of drug-receptor interaction
in terms of a dose-response relationship derived by applying the mass action law to the
reversible reaction between the drug molecule and a vacant receptor. This satisfactorily
explains most of the experimental findings; however, there are still experimental results
which show systematic deviations from the predicted results.

A computer simulation able to check different manners of interaction was tried in order
to get similar shapes to the experimental dose-response curves. A dose was taken as a set
of random numbers/drug molecules/spread over the elements/cells/ of a matrix/tissue. The
criterion for computing the response suggested by the classical receptor theory implicitly
supposes that each cell yields a response proportional to its fraction of occupied receptors.
However, this might not be the case for some tissues and that is why several alternative
criteria for computing a response were classified and used in the computer program which
generates dose-response curves. A special attention was paid to the hypothesis of all-or-
none functioning cells, having a threshold number of receptors to be occupied in order to
onset the release of a ‘‘quantum’ response. The curves obtained in this case showed a
similar shape to the experimental curves for which the classical approach leads to systematic
deviations.

When a normal distribution of the threshold of minimal number of occupied receptors
was considered, the curves became less steep/the slope for the dose equaling the dissociation
constant decreased and the general shape became nearer to the shape predicted by the classical
receptor theory. All the generated curves were analyzed by both linear transformations and
direct least-squares method. The program is also useful for studying the distribution of drug
molecules on the receptors of a tissue under other different criteria: metabolic pathways of
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the drug, the presence of a competitive or noncompetitive antagonism, the time course of

the steady states of a cell, the presence of an endogeneous competition giving a basal
response.

D. Computers in Modeling, Structure, and Function of Biomedical Effectors

The investigation of animal limb movements needs the introduction of special models. In
high accuracy measurements the acquired data are heavily linked to the model used and the
same results obtained in different models may not always be comparable. Numerical cal-
culations in the investigation of biomechanical effectors are very complicated whereas simple
topological properties of these systems are very promising in applications. Construction of
abstract models for observational purposes in which sets of bones, B, joints, J, and muscles,
M, are considered enables the development of comprehensive biomechanical system theory
in relational approach. The relational modeling used is a general method for transforming
given empirical system in an abstract model. The introduction of R-extremitators as abstract
open chains of BJ, BM, or BJM type gives interesting results in the investigation of many
biological systems of movement. The description of R-extremitators in generalized fuzzy
set notation is useful also in other applications. The determination of suitable functionals
on extremitators gives the possibility of comparison of different biomechanical structures,
measurement of their similarity, estimation of a coefficient of anthropomorphism for medical
modeling, and other biological applications. Topological modeling enables very general and
deep insight in the structure and function of biocybernetic systems of movement.

E. Computer-Aided Mathematical Models for the Biological Age of the Rat

The study of influences on the aging process requires mathematical models of the biological
age as a standard against which deviations from the so-called ‘‘normal age’’ can be measured.
A long-term cohort study with initially 1100 male Sprague-Dawley rats served to establish
multiple regression models of biological age and to test influences on aging. Twenty-three
parameters from a total number of 42 were selected for a general model.

By means of a factor analysis, the general model was subdivided in 6 factor models of
biological age to distinguish between primary and various types of secondary aging changes.
Factor 1 can be interpreted as an expression of primary aging. Factors 2 to 5 obviously
represent system-specific secondary aging, including compensatory changes. Factor 6 was
attributed to general changes in lipid metabolism not directly connected with aging.

F. Computers in Neurophysiological Systems

The mathematical analog-model of the nervous cell is employed to reflect axiomatically
the real neuron features. The computer is engaged to investigate the functional activities of
the systems composed of such elements. The computer models of random neural nets have
been developed with probabilistic-statistical organization in agreement with the available
neurophysiological data concerning the central nervous system structures and functions. The
initial functional activity of such nets is investigated followed by the subsequent ‘‘training’’
of nets for certain ‘‘behavior’’ types; for that special computer programs are employed. The
original training algorithm allows evaluation of the system structural-functioning parameters
and to change them according to the instruction goal. Methods of visualizing the above-
mentioned computer experiments on the drafting machine BENSON-200 have been devel-
oped, including formation of random neuron structures and their dynamics in the training
process.

G. Computers in the Determination of the Effect of Bodv Temperature on Thermal
Regulation

There are some trials to deliver breathing gas mixtures at 100% relative humidity at body
temperature. To accomplish this requirement and not withstanding the large variability of
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inspiratory flow patterns of patients requiring mechanical ventilatory support, these devices
must incorporate heaters with high power ratings. Heater failures have resulted in fires and
thermal injuries to patients.

Four simultaneously obtained temperature measurements on patients receiving mechanical
ventilation over an 8-hr period reveal that as the temperature of inspired air is warmed with
a humidifier to body temperature, the body heat loss through respiration is reduced. This
mechanism requires a redistribution of cardiac output to the skin. Analysis revealed that
skin temperature reflects peripheral perfusion. Subsequently, when the inspired gas tem-
perature was decreased the cardiac output and oxygen uptake returned to control values.

H. Computers for Cell Analysis in Hematology

The microscopic inspection process occupies a central role in the hematology laboratory.
A major portion of the work in these laboratories is involved with manually locating,
classifying, and examining or counting, various cells under the microscope. For example,
the purpose of the differential white blood cell examination is to establish the percentage of
each of the cell types indicated in the blood stream. This involves manually locating hundreds
of blood cells on a stained slide and classifying them into a number of different categories.
The percentage of each cell type present is then reported as a result of the examination.

In addition to quantitatively reporting the percentages of different white blood cell types,
subjective visual evaluations of the stained red blood cells are also reported. Determinations
of typical cell types, variations in red cell shape, variations in red cell size, and estimates
of all hemoglobin content are all made. Even though these evaluations are all subjective in
nature, they are often critical to the diagnosis of anemia.

These manual processes in hematology are tedious, time-consuming, and sensitive to
subjective error. The impact of automation on these visual inspection processes is to relieve
the drudgery and improve the speed and throughput of tests performed in the laboratory,
while also improving the quality of results. In this regard, the use of digital image processing
techniques to analyze and classify peripheral blood cells has developed very rapidly in the
last few years. This technology has now matured to the point where there are instruments
working routinely in clinical laboratories automatically processing blood slides on a daily
basis. An example of a state-of-the-art commercial system for white blood cell classification
in routine use today is the Leukocyte Automatic Recognition Computer (LARCQ).
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I. INTRODUCTION

Biological systems are very complex, which makes computer simulations and modeling
of them difficult and challenging. Furthermore, the physiological complexities of biological
systems makes it very difficult to formulate hypotheses to explain their behavior and to test
such hypotheses. Many of the most important aspects of behavior of complex systems such
as nonlinearity, redundancy, and hysterisis cannot be explained in verbal terms whereas, a
mathematical description of these concepts is often both compact and precise. This math-
ematical description of the system can be described by a logical data structure language.
This pseudo language (called an algorithm) can be transformed into any known programming
language and can be implemented on any computing system and is also suitable for easy
modifications of the model. Mathematical description of the system and software procedure
modeling of the mathematical description of the system are playing an increasing role to in
understanding the inherent complexity of the system. In this situation, modeling biological
systems from a software engineering viewpoint gives the researcher a direct access to
formulate a logical structure of all the variables of the system. In the following paragraphs
we will attempt to identify those features of software engineering and the modeling process
that are most important to biological systems. It is our contention that software engineering
techniques are helping to model complex systems, although such a contention is admittedly
far from perfect.

The remainder of this chapter is organized as follows: concepts of complexity and computer
modeling, software concepts in modeling, an example, and some general conclusions.

II. CHARACTERISTICS OF BIOLOGICAL SYSTEMS

Complex biological systems are those wherein the number of attributes to describe or
characterize the systems is too many, and so is the number of variables affecting the system.
Not all the attributes are necessarily observable. Very often the characteristics of the bio-
logical system defy the definition, philosophy, and scope. In other words, the structure of
configuration of the system is rarely self-evident. Over the past 10 years many researchers
have been working with various approaches on the development of models of biological
systems such as growth of cancer cells, pharmocological activity of a particular drug on
humans and animals, understanding and working of DNA molecules, and cognitive process
of human systems. Most notable are the works of Crick,? Davidson and Britten,' Leventhal
and Davison,'2 Guyton and Coleman,? Coleman,?* Iyengar and Quave,?"?* and Iyengar.?’
Recent studies of modeling complex biological systems are available in the following ref-
erences: 25, 26, 27, 28, 29, and 30.

A. Modeling Criteria of Biosystem

There are a number of criteria that must be considered in choosing a model for a given
system. These include generality, development of an algorithm, computational effort, storage
requirement, numerical stability, and implementation effort. Computational effort is tied to
the storage requirement since one may choose to recompute values to save storage. We may
think of the computational effort associated with the type of statistical modeling used. It is
difficult to generalize about storage requirements since the storage requirements are de-
pendent on both the problem solved and implementation. For most models which are used
in practice, all of the algorithms are fairly stable. However, for some parameter values,
some or all of the algorithms will experience numerical difficulties.

B. Model Behavior and Complexity
The use of models of computation allows the examination of the behavior of systems we
wish to study and focuses attention on existence and complexity processes for the model.



