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Preface

This book is intended for the vacuum system user—the university
student, technician, engineer, manager, or scientist—who wishes a
fundamental understanding of modern vacuum technology and a user’s
perspective of current vacuum practice. '

Vacuum technology is largely secondary in that it is a part of other
technologies that are central to analysis, research, development, and
manufacturing. It is used to provide a process environment. Many
advances in vacuum technique have resulted from the demands of
other technologies, although scientists and engineers have studied
vacuum for its own sake. The average user is process-oriented and
becomes immersed in vacuum technique only when problems develop
with a process or new equipment purchases become necessary.

A User’s Guide to Vacuum Technology focuses on the understanding,
operation and selection of equipment for processes used in semicon-
ductor, optics, and related technologies. It emphasizes subjects not
adequately covered elsewhere while avoiding in-depth treatments of
topics interesting only to the designer or curator. Residual gas analysis
is an important topic whose treatment here goes beyond the usual
explanation of mass filter theory. New components such as turbomo-
lecular and helium gas refrigerator cryogenic pumps are widely used
but not so well understood as diffusion pumps. New processes for film
deposition and removal require the use of toxic, corrosive, or explosive
gases. Special precautions need to be taken for safe use of these gases.
The discussion of gauges, pumps, and materials is a prelude to the
central discussion of the total system. Systems are grouped according
to their common vacuum requirements of speed, working pressure, and-
8as throughput. The suitability of each pump is examined for several
classes of systems, and basic operational procedures are given for each”

K3

vii
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high vacuum pumping system. The economic analysis discusses the
costs of purchasing, maintaining, and operating vacuum equipment and
describes ways in which operating costs can be significantly reduced.

Thanks are due to Gordon Johnson of the IBM Data Systems Divi-
sion, E. Fishkill, NY for many interesting discussions and for his
reviews of several chapters. Larry Helwig and Harvey Yu of IBM
DSD and Drs. Ned Chou, John Coburn, Jerry Cuomo, Richard Guarni-
eri, Takeshi Takamori, and Harold Winters of the IBM Research
- Division graciously reviewed chapters and pointed out many errors. 1
wish to thank all who provided illustrative material for their generosity.
Much of the material in this book has been presented in lecture form
to interested personnel from the IBM Research and Data Systems
Divisions. Their participation has been most helpful in shaping the
material. .

The graphics department of the IBM T. J. Watson Research Center
carefully and accurately prepared the artwork. Mrs. Georgianna K.
Grant and Mrs. Alberta D. Meier typed the manuscript superbly, but it
could not have been completed without the encouragement of Dr. Rick
Dill. Ms. Meier formatted the text using macros written by Ms. Ann
Gruhn. I am indebted to Ms. Beatrice Shube for her insight, advice,
and excellent editorial supervision throughout its preparation.

J. F. O’Hanlon

Yorktown Heights. New York
April 1980
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An understanding of how vacuum components and systems function
begins with an understanding of the behavior of gases at low pressures.
Chapter 1 discusses the nature of vacuum technology. Chapter 2
reviews basic gas kinetics and the flow properties of gases at reduced
pressures which form the foundation of vacuum technology.
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CHAPTER 1

Vacuum Technology

Galileo was the first person to create a partial vacuum. He did so with
a piston. This seéventeenth-century discovery was followed in 1643 by
the invention of the mercury barometer by Torricelli'and in 1650 the
first pump by von Guericke. Interest in the properties of gases at
reduced pressures remained at a low level for more than 200 years,
when a period of rabid discovery began with the invention of the
compression gauge by McLeod. In 1905 Gaede, a prolific inventor,
designed a rotary-pump sealed with mercury. These developments, in
addition to the thermal conductivity gauge, the diffusion pump, the ion
gauge and pump, the liquefaction of helium, and the refinement of
.organic pumping fluids, formed the nucleus of a technology that has
made possible everything from light bulbs to the simulation of outer
space.

Vacuum technology is the systematic study of scientific ideas and
the application of these principles to the production of practical,
reduced-pressure environments. It has drawn on discoveries from
many fields such as chemistry, physics, mathematics, ceramics, materi-
als and surface science, and engineering. It has also made fundamental
contributions in its own right.

A vacuum is a space from which air or other gas has been removed.
In practice we know that all the gas can never be removed and we
sometimes wish to remeve only a particular fraction of that gas. Air is
the most important gas to be pumped.because it is in every system. It
contains at least a dozen constituents, the concentrations of which are
given in Table 1.1. It is useful to be aware of the content of air in
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4 VACUUM TECHNOLOGY
Table 1.1 Components of Dry Atmospheric Air

Content : Pressure
Constituent (vol %) Ppm (Pa)
N, 78.08410.004 79,117
0, 20.94610.002 21,223
Co, 0.033+£0.001 33.437
Ar 0.93410.001 946.357
Ne 18.181+0.04 1.842
He 5.2410.004 0.51
Kr 1.1410.01 0.116
Xe - 0.087+0.001 0.009
H, 0.5 0.051
CH, 2, 0.203
N, O 0.5+0.1 0.051

Source: Reprinted with permission from The Handbcook of Chem-
istry and Physics, 59th ed., R. C. Weast, Ed., Copyright 1978, The
Chemical Rubber Publishing Co., CRC Press, Inc., West Palm
Beach, FL, 33409.

order to predict the responses of pumps and gauges. The concentra-
tions listed in Table 1.1 are those of dry atmospheric air at sea level
[total pressure 101,323.2 Pa (760 torr)]. The partial pressure of water
vapor is not given in this table because it is constantly changing. At
20°C a relative humidity of 50% is equivalent to a partial pressure of
1165 Pa (8.75 Torr) which makes it the third largest constituent of air.
The total pressure changes rapidly with altitude, as shown in Fig. 1.1,
its proportions, slowly but significantly. In outer space the atmosphere
is thought to be mainly hydrogen with some helium [1].

For convenience it is customary to divide the pressure scale below
atmospheric intq several ranges and to relate phenomena and processes
to them. Table 1.2 lists the ranges currently in use. Epitaxial growth
of semiconductor films [2,3] takes place in the low vacuum range.
Sputtering [4,5), plasma etching, plasma deposition [5], and low-
pressure chemical vapor deposition [5-7] are examples of processes
performed in the medium vacuum range. Pressures in the very high
vacuum range are required for most thin-film preparation [5,8],
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Fig. 1.1 Relation between the atmospheric pressure and the geometric altitude.
Reprinted with permission from The Handbook of Chemistry and Physics, 59th ed., R. C.
Weast, Ed. Copyright 1978, The Chemical Rubber Publishing Co., CRC Press, Inc.,
West Palm Beach, FL 33409.

electron microscopy [9], mass spectroscopy [10], crystal growth [11],
x-ray and electron beam lithography [12,13], and the production of
cathode ray and other vacuum tubes [14]. For ease of reading, we call
the very high vacuum region high vacuum and the pumps, high vacuum
pumps. Pressures in the ultrahigh vacuum range are necessary for
surface and material studies [15].

SI units are used with few exceptions. Pumping speeds are given in
L/s (high vacuum pumps and conductances) and in m?/h (mechanical
pumps) instead of m*/s. Diffusion pumps, whose nomenclature is not
well standardized, are referred to by the inch size of the top flange.
This often bears little relation to their performance. Unless otherwise
indicated, all formulas are given in the basic SI units.



10.
11.
12.

VACUUM TECHNOLOGY
Table 1.2 Vacuum Ranges.

Pressure Range .

Degree of Vacuum ' (Pa)

Low 10% > P >33 x 10}
Medivm 33x10°2> P > 101
_High 10t >P> 10*
Veryhigh 104 2P > 107
Ultrahigh 1077 > P> 1010
Extreme Ultrahigh 101 > P

Source: Reprinted with permission from Diction-
ary for Vacuum Science and Technology, M. Ka-
minsky and J. M. Lafferty, Eds., in preparation.
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CHAPTER 2

Gas Properties

Phrases like vacuum pump and vacuum system are not particularly
descriptive. In reality, a vacuum pump is a gas pump designed to
operate at lower than atmospheric pressures. A vacuum system con-
sists of pumps and a chamber connected by piping and ductwork. The
low pressure in the chamber is maintained by the continued flow of
gases from the chamber to the pumps, where they are entrained or
expelled into the atmosphere. This chapter discusses static and dy-
namic gas properties and the flow of gases at reduced pressures.

2.1 THE KINETIC PICTURE OF A GAS

The kinetic picture of a gas is based on several assumptions. The
volume of gas under consideration contains a large number of mole-
cules. A cubic meter of gas at a pressure of 10° Pa and a temperature
of 22°C contains 2.5 x 10?* molecules, whereas at a pressure of 107
Pa, a very high vacuum, it contains 2.5 x 10" molecules. Indeed, any
volume and pressure normally used in the laboratory will contain
mofeculfes in large numbers. Adjacent molecules are separated by
distances that are large compared with their individual diameters. If
we could stop all molecules instantaneously and place them on the
coordinates of a grid, the average spacing between them would be
about 3.4 x 10° m at atmospheric pressure (10° Pa). The diameter of
most molecules is in the 2 x 10 to 6 x 10! m range and distances
of about 6 to 15 times their diameter at atmospheric pressures separate



