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Who hath measured the waters in the hollow of
his hand, and weighed the mountains in scales?
IsAalaH 40, 12
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Preface

The physics of long flexible chains was pioneered by several great
scientists: Debye, Kuhn, Kramers, Flory, and so forth. They constructed the
basic ideas; those concerning static properties are summarized in Flory’s
book,’ and those concerning dynamics in various reviews.2%* More
recently, a second stage in the physics of polymers has evolved, because of
the availability of new experimental and theoretical tools. As usual, these
new techniques brought about some important changes in our viewpoints.

(i) Neutron diffraction allowed for measurements of polymer conforma-
tions at large scales which were not feasible with X-rays. The essential
point is that different isotopes give different scattering amplitudes for
neutrons.”> Thus, it became possible to label one chain (replacing, for
instance, its protons by deuterons) and to observe it individually in a sea of
chemically identical but unlabeled chains. The same operation is not
feasible with X-rays, for which the labeling is based on the attachment of
heavy atoms to the chain; these atoms make the labeled and unlabeled
species very different, and spurious segregation effects always occur. The
advent of neutron scattering experiments on labeled species opened up a
vast new field; precise data on long-range conformations and correlations
became available rapidly.

(ii) Light scattering has traditionally been used for measurements of
molecular weights and sizes in dilute solution. This technique, however,
was limited and delicate, mainly because of the many spurious sources of
scattering (e.g., dust) which were always present. The situation suddenly
improved when the inelastic scattering of laser light became accessible.
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14 PREFACE

This ‘“‘photon beat’’ method® allows one to study the dynamics of the
scattering centers in a frequency range (1 to 10° cycles) which is suitable
for the overall motions of polymer chains. Furthermore, all the spurious
signals caused by dust particles are easier to eliminate, since large
particles are essentially immobile and contribute only to the elastic
spectrum.

(iii) A certain refinement also occurred in theoretical methods. Func-
tional integrals, Feynman diagrams, and all the techniques of many-body
theory were first applied to polymers in the pioneering work of S. F.
Edwards.” In a different direction, certain numerical methods, allowing the
study of polymer statistics on simple lattice models, became extremely
powerful. The British school used exact summation on short chains, sup-
plemented by clever extrapolation techniques to reproduce the behavior of
long chains.® Another approach (with a slightty different spectrum of
application) was the Monte Carlo method, in which a small (but represen-
tative) fraction of all possible conformations in a given problem is gen-
erated and sampled.® Both techniques have been extremely helpful in
elucidating certain- geometric laws and in displaying the existence of
*‘characteristic exponents,’’ to which we constantly refer in this book.

In a third stage, a relationship between polymer statistics and phase
transition“problems was discovered.'®!! This discovery allowed polymer
science to benefit from the vast knowledge which had been accumulated on
critical phenomena; a number of remarkably simple scaling properties
emerged. At this third stage, however, our community is divided; a new
theoretical language (heavily loaded with field theoretical concepts) has
appeared but has remained essentially unintelligible to most polymer
scientists.

The aim of this book is to eliminate this barrier, or at least to reduce it as
much as possible. In a series of lectures given between 1975 and 1978, in
Paris, Strasbourg, Grenoble, and Leiden, I found that most of the essential
concepts of polymer physics can be explained in simple terms and do not
require any advanced theoretical education. Thus, I hope to give to my
reader a reasonable understanding of certain ‘‘universal’’ properties:
scaling laws and characteristic exponents in polymer solutions and melts.
All details are systematically omitted.

(i) 1 ignore numerical coefficients in most formulas, where they would
obscure the main line of thought.

(ii) On the experimental side, the discussions are very brief. I do not try
to recapitulate all the data on a given problem but simply to select studies
in which scaling features are apparent.

(iii) On the other hand, this book is not intended as an introduction for
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PREFACE 15

a young polymer theorist. Theoretical methods are relegated to the last
three chapters; and even there my aim is not to provide the reader with
the ability to make advanced caiculations; more modestly, I would like him
(or her) to reach a certain qualitative understanding of the methods—how
they work and where they fail. (A much more complete description of
polymer theory will be available in a forthcoming book by J. des Cloiseaux
and G. Jannink.)

(iv) Certain important areas of polymer physics are not mentioned at ali;
crystallization Kinetics and glass transitions are two glaring examples.
Polyelectrolytes are mentioned only briefly. In these areas we do not know
whether or not scaling concepts will be really useful.

On the whole, this book is meant for experimentalists in polymer science
who wish to incorporate the recent advances into their modes of thinking.
Obviously certain difficulties remain even for these readers. In particular
there is a general question of language and notation.

(i) Thave tried to follow the basic notation of Flory,! but I have had to -
introduce some modifications which correspond to recent trends—for
instance, to use a polymerization index (V) rather than a molecular weight
(M) as the fundamental object; to eliminate all mention of Avogadro’s
number; to write thermal energies as 7 rather than 4, T (i.c., to use energy
units for the temperature T, as is done now in most theoretical literature);
and so forth. Such modifications, although trivial, will disturb the reader
at the beginning, but they represent (I think) a necessary simplification.

(ii) At a more fundamental level, my inclination is always to seek com-
parisons to other branches of science: conceptually, a single chain in
an external field is closely related to a quantum particle, as first found by
Edwards; there is a profound analogy between polymer statistics and phase
transitions; the gelation problem is related to the general concept of per-
colation; and so forth. I have tried to explain some of these analogies,
without assuming prior knowledge of quantum mechanics or critical
phenomena (a summary of critical phenomena is included in Chapter X).
One pleasant discovery, when I was teaching polymer statistics, was to find
that renormalization groups can be explained in very simple words to
polymer chemists; the last chapter describes this approach.

I have also tried to help my readers by carefully selecting references.
As explained, I never give a complete historical list on any topic; I quote
mainly a few basic reviews which are both clear and accessible. (Most of
the polymer literature written before 1965 and relevant to the present
text is analyzed in the books mentioned at the beginning of this pref-
ace.) For the more recent advances on scaling laws, the majority of my
references are French. This is not an expression of nationalistic pride; it



16 PREFACE

just happened that our experimentalists, under the impetus of H. Benoit
in Strasbourg and G. Jannink in Saclay, were able to set up at the right
time an efficient, cooperative effort for elucidating scaling laws. The pres-
ent text reflects to a large extent the discussions of this program during
the past five or six years.

The laboratories at Strasbourg, Saclay, and Collége de France that
joined in this venture have been associated for some time under the
acronym STRASACOL, the story of which is summarized in a short
note.'? However, the cooperation has rapidly extended beyond these
limits, involving people at Brest, Grenoble, and Chambery, and I hope it
expands even further. To all these units I am profoundly grateful, for their
eagemess in discussing present research and for their open mind toward
new directions. Last but not least, I wish to mention my debt to many
friends on the theoretical side: to C. Sadron; to J. des Cloiseaux, G. Sarma,
and M. Daoud in Saclay; to F. Brochard and P. Pfeuty in Orsay; to
S. F. Edwards in England; and especially to our foreign visitors: S. Alex-
ander, J. Ferry, F. C. Frank, P. Martin, P. Pincus, and W. Stockmayer,
who instructed us and corrected many of my mistakes. ‘

Some mistakes certainly remain, and at various points I present very
conjectural views. Nevertheless, let us hope that the book will still give a
reasonable image of what is universal and what is system dependent in
these fascinating systems of mobile entangled chains.

P. G. DE GENNES

Paris
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