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Preface

In the 23 years since the publication of the first edition of this book, the field of analog
integrated circuits has developed and matured. The initial groundwork was laid in bipolar
- technology, followed by a rapid evolution of MOS analog integrated circuits. Further-
more, BiICMOS technology (incorporating both bipolar and CMOS devices on one chip)
has emerged as a serious contender to the original technologies. A key issue is that CMOS
technologies have become dominant in building digital circuits because CMOS digital
circuits are smaller and dissipate less power than their bipolar counterparts. To reduce
system cost and power dissipation, analog and digital circuits are now often integrated
together, providing a strong economic incentive to use CMOS-compatible analog circuits.
As aresult, an important question in many applications is whether to use pure CMOS or a
BiCMOS technology. Although somewhat more expensive to fabricate, BICMOS allows
the designer to use both bipolar and MOS devices to their best advantage, and also al-
lows innovative combinations of the characteristics of both devices. In addition, BICMOS
can reduce the design time by allowing direct use of many existing cells in realizing a
given analog circuit function. On the other hand, the main advantage of pure CMOS is
that it offers the lowest overall cost. Twenty years ago, CMOS technologies were only fast
enough to support applications at audio frequencies. However, the continuing reduction of
the minimum feature size in integrated-circuit (IC) technologies has greatly increased the
maximum operating frequencies, and CMOS technologies have become fast enough for
many new applications as a result. For example, the required bandwidth in video appli-
cations is about 4 MHz, requiring bipolar technologies as recently as 15 years ago. Now,
however, CMOS can ¢asily accommodate the required bandwidth for video and is even
being used for radio-frequency applications.

In this fourth edition, we have combined the consideration of MOS and bipolar cir-
cuits into a unified treatment that also includes MOS-bipolar connections made possible
by BiCMOS technology. We have written this edition so that instructors can easily se-
lect topics related to only CMOS circuits, only bipolar circuits, or a combination of both.
We believe that it has become increasingly important for the analog circuit designer to
have a thorough appreciation of the similarities and differences between MOS and bipolar
devices, and to be able to design with either one where this is appropriate.

Since the SPICE computer analysis program is now readily available to virtually
all electrical engineering students and professionals, we have included extensive use of
SPICE in this edition, particularly as an integral part of many problems. We have used
computer analysis as it is most commonty employed in the engineering design process—
both as a more accurate check on hand calculations, and also as a tool to examine complex
circuit behavior beyond the scope of hand analysis. In the problem sets, we have also in-
cluded a number of open-ended design problems to expose the reader to real-world situa-
tions where a whole range of circuit solutions may be found to satisfy a given performance
specification.

This book is intended to be useful both as a text for students and as a reference book
for practicing engineers. For class use, each chapter includes many worked problems; the
problem sets at the end of each chapter illustrate the practical applications of the material
in the text. All the authors have had extensive industrial experience in IC design as well

vii
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as in the teaching of courses on this subject, and this experience is reflected in the choice
of text material and in the problem sets.

Although this book is concerned largely with the analysis and design of ICs, a consid-
erable amount of material is also included on applications. In practice, these two subjects
are closely linked, and a knowledge of both is essential for designers and users of ICs.
The latter compose the larger group by far, and we believe that a working knowledge of
IC design is a great advantage to an IC user. This is particularly apparent when the user
must choose from among a number of competing designs to satisfy a particular need. An
understanding of the IC structure is then useful in evaluating the relative desirability of the
different designs under extremes of environment or in the presence of variations in supply
voltage. In addition, the IC user is in a much better position to interpret a manufacturer’s
data if he ot she has a working knowledge of the internal operation of the integrated circuit.

The contents of this book stem largely from courses on analog integrated circuits given
at the University of Califernia at the Berkeley and Davis campuses. The courses are un-
dergraduate electives and first-year graduate courses. The book is structured so that it
can be used as the basic text for a sequence of such courses. The more advanced mate-
rial is found at the end of each chapter or in an appendix so that a first course in analog
integrated circuits can omit this material without loss of continuity. An outline of each
chapter is given below together with suggestions for material to be covered in such a first
course. It is assumed that the course consists of three hours of lecture per week over a
15-week semester and that the students have a working knowledge of Laplace transforms
and frequency-domain circuit analysis. It is also assumed that the students have had an
introductory course in electronics so that they are familiar with the principles of transistor
operation and with the functioning of simple analog circuits. Unless otherwise stated, each
chapter requires three to four lecture hours to cover.

Chapter 1 contains a summary of bipolar transistor and MOS transistor device physics,
We suggest spending one week on selected topics from this chapter, the choice of topics
depending on the background of the students. The material of Chapters 1 and 2 is quite
important in IC design because there is significant interaction between circuit and device
design, as will be seen in later chapters. A thorough understanding of the influence of
device fabrication on device characteristics is essential.

Chapter 2 is concerned with the technology of IC fabrication and is largely descriptive.
One lecture on this material should suffice if the students are assigned to read the chapter.

Chapter 3 deals with the characteristics of elementary transistor connections. The ma-
terial on one-transistor amplifiers should be a review for students at the senior and gradu-
ate levels and can be assigned as reading. The section on two-transistor amplifiers can be
covered in about three hours, with greatest emphasis on differential pairs. The material on
device mismatch effects in differential amplifiers can be covered to the extent that time
allows,

In Chapter 4, the important topics of current mirrors and active loads are considered.
These configurations are basic building blocks in modern analog IC design, and this ma-
terial should be covered in full, with the exception of the material on band-gap references
and the material in the appendices.

Chapter 5 is concerned with output stages and methods of delivering output power to
a load. Integrated-circuit realizations of Class A, Class B, and Class AB output stages are
described, as well as methods of output-stage protection. A selection of topics from this
chapter should be covered.

Chapter 6 deals with the design of operational amplifiers (op amps). [llustrative exam-
ples of dc and ac analysis in both MOS and bipolar op amps are performed in detail, and
the limitations of the basic op amps are described. The design of op amps with improved
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characteristics in both MOS and bipolar technologies is considered. This key chapter on
amplifier design requires at least six hours.

In Chapter 7, the frequency response of amplifiers is considered. The zero-value time-
constant technique is introduced for the calculations of the —3-dB frequency of complex
circuits. The material of this chapter should be considered in full.

Chapter 8 describes the analysis of feedback circuits. Two different types of analysis
are presented. two-port and return-ratio analyses. Either approach should be covered in
full with the section on voltage regulators assigned as reading.

Chapter 9 deals with the frequency response and stability of feedback circuits and
should be covered up to the section on root locus. Time may not permit a detailed discussion
of root locus, but some introduction to this topic can be given.

In a 15-week semester, coverage of the above material leaves about two weeks for
Chapters 10, 11, and 12. A selection of topics from these chapters can be chosen as follows.
Chapter 10 deals with nonlinear analog circuits, and portions of this chapter up to Section
10.3 could be covered in a first course. Chapter 11 is a comprehensive treatment of noise
in integrated circuits, and material up to and including Section 11.4 is suitable. Chapter 12
describes fully differential operational amplifiers and common-mode feedback and may
be best suited for a second course.

We are grateful to the following colleagues for their suggestions for and/or eval-
uation of this edition: R. Jacob Baker, Bernhard E. Boser, A. Paul Brokaw, John N.
Churchill, David W. Cline, Ozan E. Erdogan, John W. Fattaruso, Weinan Gao, Edwin W.
Greeneich, Alex Gros-Balthazard, Tiinde Gyurics, Ward J. Helms, Timothy H. Hu, Shafiq
M. Jamal, John P. Keane, Haideh Khorramabadi, Pak-Kim Lau, Thomas W. Matthews,
Krishnaswamy Nagaraj, Khalil Najafi, Borivoje Nikolié, Robert A. Pease, Lawrence T.
Pileggi, Edgar Sdnchez-Sinencio, Bang-Sup Song, Richard R. Spencer, Eric J. Swanson,
Andrew Y. J. Szeto, Yannis P. Tsividis, Srikanth Vaidianathan, T. R. Viswanathan, Chorng-
Kuang Wang, and Dong Wang. We are also grateful to Kenneth C. Dyer for allowing us to
use on the cover of this book a die photograph of an integrated circuit he designed and to
Zoe Marlowe for her assistance with word processing. Finally, we would like to thank the
people at Wiley and Publication Services for their efforts in producing this fourth edition.

The material in this book has been greatly influenced by our association with Donald
O. Pederson, and we acknowledge his contributions.

Berkeley and Davis, CA, 2001 Paul R. Gray
Paul J. Hurst
Stephen H. Lewis
Robert G. Meyer
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CHAPTER

Modelsforintegrated-Circuit
ActiveDevices

1.1 Introduction

The analysis and design of integrated circuits depend heavily on the utilization of suitable
models for integrated-circuit components. This is true in hand analysis, where fairly simple
models are generally used, and in computer analysis, where more complex models are
encountered. Since any analysis is only as accurate as the model used, it is essential that
the circuit designer have a thorough understanding of the origin of the models commonly
utilized and the degree of approximation involved in each.

This chapter deals with the derivation of large-signal and small-signal models for
integrated-circuit devices. The treatment begins with a consideration of the properties of
pn junctions, which are basic parts of most integrated-circuit elements. Since this book is
primarily concerned with circuit analysis and design, no attempt has been made to produce
acomprehensive treatment of semiconductor physics. The emphasis is on summarizing the
basic aspects of semiconductor-device behavior and indicating how these can be modeled
by equivalent circuits.

1.2 Depletion Region of a pn Junction

The properties of reverse-biased pr junctions have an important influence on the charac-
teristics of many integrated-circuit components. For example, reverse-biased pn junctions
exist between many integrated-circuit elements and the underlying substrate, and these
junctions all. contribute voltage-dependent parasitic capacitances. In addition, a number
of important characteristics of active devices, such as breakdown voltage and output re-
sistance, depend directly on the properties of the depletion region of a reverse-biased pn
junction. Finally, the basic operation of the junction field-effect transistor is controlled by
the width of the depletion region of a pn junction. Because of its importance and applica-
tion to many different problems, an analysis of the depletion region of a reverse-biased pn
junction is considered below. The properties of forward-biased pn junctions are treated in
Section 1.3 when bipolar-transistor operation is described.

Consider a pn junction under reverse bias as shown in Fig. 1.1. Assume constant
doping densities of Np atoms/cm® in the n-type material and N, atoms/cm? in the p-
type material. (The characteristics of junctions with nonconstant doping densities will be
described later.) Due to the difference in carrier concentrations in the p-type and n-type
regions, there exists a region at the junction where the mobile holes and electsons have
been removed, leaving the fixed acceptor and donor ions. Each acceptor atom carries a
negative charge and each donor atom carries a positive charge, so that the region near the
junction is one of significant space charge and resulting high electric field. This is called

1
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the depletion region or space-charge region. It is assumed that the edges of the depletion
region are sharply defined as shown in Fig. 1.1, and this is a good approximation in most
cases.

For zero applied bias, there exists a voltage ¢ across the junction called the buiir-in
potential. This potential opposes the diffusion of mobile holes and electrons across the
junction in equilibrium and has a value!

Yo =Vrin—5 LD

where

kT

Vr = p =26mV at 300°K

the quantity n; is the intrinsic carrier concentration in a pure sample of the semiconductor
and n; = 1.5 X 10'%m~3 at 300°K for silicon.

In Fig. 1.1 the built-in potential is augmented by the applied reverse bias, Vg, and the
total voltage across the junction is (o + Vg). If the depletion region penetrates a distance
W\ into the p-type region and W; into the n-type region, then we require

WiN4s = WalNp (1.2)

because the total charge per unit area on either side of the junction must be equal in mag-
nitude but opposite in sign.
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Poisson’s equation in one dimension requires that

2

d‘:——’_’=@ﬁ for —W;<x<0 (1.3)

dx € €

where p is the charge density, g s the electron charge (1.6 X 1071 coulomb), and € is the

permittivity of the silicon (1.04 X 10712 farad/cm). The permittivity is often expressed as
€ = KsEQ (14)

where Ky is the dielectric constant of silicon and € is the permittivity of free space (8.86 X
10~14 F/cm). Integration of (1.3) gives

dV _ gNa

where C is a constant. However, the electric field € is given by
_ _dV _ qNA
- v (6 x+C1) (L6)

Since there is zero electric field outside the depletion region, a boundary condition is
€=0 for x =-W,

and use of this condition in (1.6) gives
%=—ﬂzi(x+wl)=—‘% for —-W;<x<0 a7

Thus the dipole of charge existing at the junction gives rise to an electric field that varies
linearly with distance.
Integration of (1.7) gives

N 2
v=24 (f- + Wlx)+ G (1.8)
€ \2
If the zero for potential is arbitrarily taken to be the potential of the neutral p-type region,
then a second boundary condition is

V=0 for x =-W,
and use of this in (1.8) gives

Ny (2 w3
V=40 wixdr T} for -Wy<x<0 (1.9)
€ \2 2
At x = 0, we define V = V), and then (1.9) gives
gN4s Wi
Vi = ——— .
1 = 3 (1.10)
If the potential difference from x = Oto x = W; is V3, then it follows that
v, = Mo Wy (1.11)
€ 2

and thus the total voltage across the junction is

Yo+ Vr=Vi+V; = %(N,,w,2 + NpW3) (1.12)



