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Preface

Although there are many textbooks that deal with the formal apparatus of
quantum mechanics and its application to standard problems, before the first
edition of this book (Prentice-Hall, 1990) none took into account the devel-
opments in the foundations of the subject which have taken place in the last
few decades. There are specialized treatises on various aspects of the founda-
tions of quantum mechanics, but they do not integrate those topics into the
standard pedagogical material. I hope to remove that unfortunate dichotomy,
which has divorced the practical aspects of the subject from the interpreta-
tion and broader implications of the theory. This book is intended primarily
as a graduate level textbook, but it will also be of interest to physicists and
philosophers who study the foundations of quantum mechanics. Parts of the
book could be used by senior undergraduates.

The first edition introduced several major topics that had previously been
found in few, if any, textbooks. They included:

- A review of probability theory and its relation to the quantum theory.

— Discussions about state preparation and state determination.

~ The Aharonov-Bohm effect.

~ Some firmly established results in the theory of measurement, which are
useful in clarifying the interpretation of quantum mechanics.

~ A more complete account of the classical limit.

- Introduction of rigged Hilbert space as a generalization of the more familiar
Hilbert space. It allows vectors of infinite norm to be accommodated
within the formalism, and eliminates the vagueness that often surrounds
the question whether the operators that represent observables possess a
complete set of eigenvectors.

~  The space-time symmetries of displacement, rotation, and Galilei transfor-
mations are exploited to derive the fundamental operators for momentum,
angular momentum, and the Hamiltonian.

- A charged particle in a magnetic field (Landau levels).
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—  Basic concepts of quantum optics.

— Discussion of modern experiments that test or illustrate the fundamental
aspects of quantum mechanics, such as: the direct measurement of the
momentum distribution in the hydrogen atom; experiments using the sin-
gle crystal neutron interferometer; quantum beats; photon bunching and
antibunching.

~  Bell's theorem and its implications.

This edition contains a considerable amount of new material. Some of the
newly added topics are:

- An introduction describing the range of phenomena that quantum theory
seeks to explain.

- Feynman’s path integrals.

- The adiabatic approximation and Berry’s phase.

- Expanded treatment of state preparation and determination, including the
no-cloning theorem and entangled states.

— A new treatment of the energy-time uncertainty relations.

- A discussion about the influence of a measurement apparatus on the envi-
ronment, and vice versa.

~ A section on the quantum mechanics of rigid bodies.

~ A revised and expanded chapter on the classical limit.

—  The phase space formulation of quantum mechanics.

—~ Expanded treatment of the many new interference experiments that are
being performed.

-~  Optical homodyne tomography as a method of measuring the quantum
state of a field mode.

- Bell’s theorem without inequalities and probability.

The material in this book is suitable for a two-semester course. Chapter 1
consists of mathematical topics (vector spaces, operators, and probability),
which may be skimmed by mathematically sophisticated readers. These topics
have been placed at the beginning, rather than in an appendix, because one
needs not only the results but also a coherent overview of their theory, since
they form the mathematical language in which quantum theory is expressed.
The amount of time that a student or a class spends on this chapter may vary
widely, depending upon the degree of mathematical preparation. A mathe-
matically sophisticated reader could proceed directly from the Introduction to
Chapter 2, although such a strategy is not recommended.
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The space-time symmetries of displacement, rotation, and Galilei trans-
formations are exploited in Chapter 3 in order to derive the fundamental
operators for momentum, angular momentum, and the Hamiltonian. This
approach replaces the heuristic but inconclusive arguments based upon
analogy and wave-particle duality, which so frustrate the serious student. It
also introduces symmetry concepts and techniques at an early stage, so that
they are immediately available for practical applications. This is done without
requiring any prior knowledge of group theory. Indeed, a hypothetical reader
who does not know the technical meaning of the word “group”, and who
interprets the references to “groups” of transformations and operators as
meaning sets of related transformations and operators, will lose none of the
essential meaning.

A purely pedagogical change in this edition is the dissolution of the old
chapter on approximation methods. Instead, stationary state perturbation
theory and the variational method are included in Chapter 10 (“Formation of
Bound States”), while time-dependent perturbation theory and its applications
are part of Chapter 12 (“Time-Dependent Phenomena”). I have found this to
be a more natural order in my teaching. Finally, this new edition contains
some additional problems, and an updated bibliography.

Solutions to some problems are given in Appendix D. The solved problems
are those that are particularly novel, and those for which the answer or the
method of solution is important for its own sake (rather than merely being
an exercise).

At various places throughout the book I have segregated in double
brackets, [[---]], comments of a historical comparative, or critical nature.
Those remarks would not be needed by a hypothetical reader with no
previous exposure to quantum mechanics. They are used to relate my
approach, by way of comparison or contrast, to that of earlier writers, and
sometimes to show, by means of criticism, the reason for my departure from
the older approaches.
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Introduction

The Phenomena of
Quantum M_echanics

Quantum mechanics is a general theory. It is presumed to apply to every-
thing, from subatomic particles to galaxies. But interest is naturally focussed
on those phenomena that are most distinctive of quantum mechanics, some
of which led to its discovery. Rather than retelling the historical develop-
ment of quantum theory, which can be found in many books,* I shall illustrate
quantum phenomena under three headings: discreteness, diffraction, and
coherence. It is interesting to contrast the original experiments, which led
to the new discoveries, with the accomplishments of modern technology.

It was the phenomenon of discreteness that gave rise to the name “quan-
tum mechanics”. Certain dynamical variables were found to take on only a

Current (miiliamps)
N [ ]
8 3
| ]

8
T

J I | ' | !
5
Voits
Fig. 0.1 Current through a tube of Hg vapor versus applied voltage, from the data of

Franck and Hertz (1914). [Figure reprinted from Quantum Physics of Atoms, Molecules,
Solids, Nuclei and Particles, R. Eisberg and R. Resnick (Wiley, 1985).]

*See, for example, Eisberg and Resnick (1985) for an elementary treatment, or Jammer
(1966) for an advanced study.
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discrete, or guantized, set of values, contrary to the predictions of classical
mechanics. The first direct evidence for discrete atomic energy levels was
provided by Franck and Hertz (1914). In their experiment, electrons emitted
from a hot cathode were accelerated through a gas of Hg vapor by means of an
adjustable potential applied between the anode and the cathode. The current
as a function of voltage, shown in Fig. 0.1, does not increase monotonically,
but rather displays a series of peaks at multiples of 4.9 volts. Now 4.9 eV is
the energy required to excite a Hg atom to its first excited state. When the
voltage is sufficient for an electron to achieve a kinetic energy of 4.9 eV, it is
able to excite an atom, losing kinetic energy in the process. If the voltage is
more than twice 4.9 V, the electron is able to regain 4.9 eV of kinetic energy
and cause a second excitation event before reaching the anode. This explains
the sequence of peaks.

The peaks in Fig. 0.1 are very broad, and provide no evidence for the
sharpness of the discrete atomic energy levels. Indeed, if there were no better
evidence, a skeptic would be justified in doubting the discreteness of atomic
energy levels. But today it is possible, by a combination of laser excitation
and electric field filtering, to produce beams of atoms that are all in the same
quantum state. Figure 0.2 shows results of Koch et al (1988), in which
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Fig. 0.2 Individual excited states of atomic hydrogen are resolved in this data [reprinted
from Koch et al,, Physica Scripta T26, 51 (1988)].
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the atomic states of hydrogen with principal quantum numbers from n = 63
to n = 72 are clearly resolved. Each n value contains many substates that
would be degenerate in the absence of an electric field, and for n = 67 even
the substates are resolved. By adjusting the laser frequency and the various
filtering fields, it is possible to resolve different atomic states, and so to produce
a beam of hydrogen atoms that are all in the same chosen quantum state. The
discreteness of atomic energy levels is now very well established.

54V,

Fig. 0.3 Polar plot of acattering intensity versus angle, showing evidence of electron diffrac-
tion, from the data of Davisson and Germer (1927).

The phenomenon of diffraction is characteristic of any wave motion, and is
especially familiar for light. It occurs because the total wave amplitude is the
sum of partial amplitudes that arrive by different paths. If the partial ampli-
tudes arrive in phase, they add constructively to produce a maximum in the
total intensity; if they arrive out of phase, they add destructively to produce
a minimum in the total intensity. Davisson and Germer (1927), following a
theoretical conjecture by L. de Broglie, demonstrated the occurrence of diffrac-
tion in the reflection of electrons from the surface of a crystal of nickel. Some
of their data is shown in Fig. 0.3, the peak at a scattering angle of 50° being
the evidence for electron diffraction. This experiment led to the award of a
Noble prize to Davisson in 1937. Today, with improved technology, even an
undergraduate can easily produce electron diffraction patterns that are vastly
superior to the Nobel prize-winning data of 1927. Figure 0.4 shows an electron
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Fig. 0.4 Diffraction of 10 kV electrons through a graphite foil; data from an undergrad-
uate laboratory experiment. Some of the spots are blurred because the foil contains many
crystallites, but the hexagonal symmetry is clear.

diffraction pattern from a crystal of graphite, produced in a routine under-
graduate laboratory experiment at Simon Fraser University. The hexagonal
array of spots corresponds to diffraction scattering from the various crystal
planes.

The phenomenon of diffraction scattering is not peculiar to electrons, or
even to elementary particles. It occurs also for atoms and molecules, and is a
universal phenomenon (see Ch. 5 for further discussion). When first discovered,
particle diffraction was a source of great puzzlement. Are “particles” really
“waves”? In the early experiments, the diffraction patterns were detected
holistically by means of a photographic plate, which could not detect individual
particles. As a result, the notion grew that particle and wave properties were
mutually incompatible, or complementary, in the sense that different measure-
ment apparatuses would be required to observe them. That idea, however, was
only an unfortunate generalization from a technological limitation. Today it is
possible to detect the arrival of individual electrons, and to see the diffraction
pattern emerge as a statistical pattern made up of many small spots (Tonomura
et al, 1989). Evidently, quantum particles are indeed particles, but particles
whose behavior is very different from what classical physics would have led us
to expect.

In classical optics, coherence refers to the condition of phase stability that
is necessary for interference to be observable. In quantum theory the concept
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of coherence also refers to phase stability, but it is generalized beyond any
analogy with wave motion. In general, a coherent superposition of quantum
states may have properties than are qualitatively different from a mixture of
the properties of the component states. For example, the state of a neutron
with its spin polarized in the +z direction is expressible (in a notation that will
be developed in detail in later chapters) as a coherent sum of states that are
polarized in the +z and —z directions, | + z) = (| + z) + | — 2))/V2. Likewise,
the state with the spin polarized in the +z direction is expressible in terms of
the +z and ~z polarizations as | + z) = (| + z) + | — z))/V2.

An experimental realization of these formal relations is illustrated in
Fig. 0.5. In part (a) of the figure, a beam of neutrons with spin polarized
in the +z direction is incident on a device that transmits +z polarization and
reflects —z polarization. This can be achieved by applying a strong magnetic
field in the z direction. The potential energy of the magnetic moment in the
field, —B - i, acts as a potential well for one direction of the neutron spin,
but as an impenetrable potential barrier for the other direction. The effective-
ness of the device in separating +z and —z polarizations can be confirmed by
detectors that measure the 2z component of the neutron spin.

(a)
fD
7,
Y W v W

Fig. 0.5 (a) Splitting of a +z spin-polarized beam of neutrons into +z and —z components;
(b) coherent recombination of the two components; (c) splitting of the +z polarized beam
into +z and —z components.

®) )

In part (b) the spin-up and spin-down beams are recombined into a single
beam that passes through a device to separate +z and —z spin polarizations.



