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Foreword

In recent years there has been a tremendous expansion in the develop-
ment of the techniques and principles of physwal chemistry. As a result
-most physical chemists find it difficult to maintain an understanding of
the entire field.

The purpose of this treatise is to present a comprehensive treatment
of physical chemistry for advanced students and investigators in a
reasonably small number of volumes. We have attempted to include
all important topics in physical chemistry together with bordérline
subjects which are of particular interest and impértance. The treatméent
is at an advanced level. However, elementary theory and facts have not
been excluded but are presented in a concise form with emphasis on
laws which have general importance. No attempt has been made to be
encyclopedic. However, the reader should be able to find helpful
references to uncommon facts or theories in the" index and biblio-
graphies.

Since no single physical chemist could write authontatlvely in all the
areas of physical chemistry, distinguished investigators have been
invited to contribute chapters in the field of their special competence.

If these volumes are even partially successful in meeting these goals
we will feel rewarded for our efforts.

We would like to thank the authors for their contnbutlons and to
thank the staff of Academic Press for their assistance.

Henry EvRING
DoucLas HENDERsON
WILHELM JoOsT
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Preface

Whether a chemist or physicist is concerned with the properties of a
system, with an equilibrium constant, or with a reaction rate, the
solution of the problem ultimately requires a knowledge of the partition
functions of the constituents of the system. T'o understand such problems,
one must know statistical mechanics. It is to meet this nced that this
book has been written. The authors of chapters are specialists in thé
phase of the subject they treat. They have each provided references. to
supplementary material which could not be included in the space
available. We hope that what is lost in unity fromx looking through
many eyes is more than compensated for by breadth and depth of
coverage. : :

It is intended that the book be understandable without supplementary
reading to graduate students in chemistry and physics, and that, to-
gether with the other nine volumes of the treatise, a student can obtain
an overview of contemporary physical chemistry. However well we
may have succeeded in presenting physical chemistry ‘today, the field
will have expanded by tomorrow. It is expected, nonctheless, that in
large part what is new will simply add to what we now have rather
than replace it. If the material presented here makes phvsical chemistry
more generally accessible, we shall feel well repaid.
HeNkry EYrING
December, 1966
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Classical Statistical Thermodynamics
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I. Scope of Discussion

The goal of statistical thermodynamics is to demonstrate that the
whole content of classical thermodynamics is a consequence of the laws
of mechanics and to actually calculate the classical thermodynamic
properties of any particular system from its mechanical specifications.
We do not expect to accomplish such a sweeping program in the limited
space we have here; in fact, it is not yet possible to carry out such a
program complete in every detail. It does appear that eventually this
will be done. Some of the difficulties are purely mathematical; some
involve ambiguity as to just what some nonmechanical, gross properties
of a system mean from a microscopic, detailed viewpoint.

1



2 John E. Kilpatrick

One may assume the laws of mechanics to be either those of classical,
Newtonian mechanics (which leads to classical statistical mechanics) or
those of quantum mechanics (which leads to quantum statistical
mechanics). We shall make the former assumption here; the second will
be made in Chapter 2.

In addition one may calculate the properties of a system in a state
of equilibrium or of a system in a state of flux. The former is by far the
easier to do; the theory and practice are much more nearly complete.
We shall confine ourselves strictly to equilibrium systems and to net
changes between two states of equilibrium due to a relaxation of
constraints. This is the attitude that is usually taken in classical thermo-
dynamics. This division of statistical mechanics is usually called statistical
thermodynamics.

Many approaches have been used in developing the theory of statistical
mechanics. These approaches may be roughly classified as (1) those -
which attempt to find the most probable microscopic, detailed state of a
system, then calculate the gress, macroscopic properties of interest for
this state and finally identify the experimentally observable properties
with these most probable values; and (2) those which attempt to find the
probability of each macroscopic state, construct an average weighted
with these probabilities and then identify the experimentally observable
properties with these averages. Sometimes a combination of both
techniques is used. Since the sort of probability distribution functions
found in real systems are nearly always extremely sharply peaked at one
place, i.e., are very nearly Dirac delta functions, there is very little
practical difference in the results of the two approaches. In this chapter
we shall use the average value approach.

II. Phase Space and Classical Mechanics

The detailed dynamic state of a mechanical system .is specified in
classical mechanics by giving the values of its # positional coordinates
together with the values of the n corresponding conjugate momenta.
A system consisting of one point mass molecule requires three positional
coordinates, usually chosen to be three cartesian coordinates with
respect to any convenient set of axes. A molecule formed from v point
mass atoms requires 3v positional coordinates. If the molecule is non-
linear, these are often chosen to be three center of gravity coordinates,
three angular coordinates (such as Eulerian angles) to give its orientation
in space and 3v—6 internal or relative coordinates taken in such a way as
to completely specify the relative positions of -the constituent atoms.
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Alternatively, 3v cartesian coordinates, three for each atom, could be
used. A system of N melecules, each formed from » atoms, would require
3vN positional coordinates.

The original description of the mechanical system under discussion
contains sufficient information to formulate the Lagrangian function for
the system. The Lagrangian function, L, is a function of the positional
coordinates, ¢;, and their velocities or time derivatives, g;» and js
equal to the difference between the kinetic energy of the system,

T(Gy,G2s s Gn»qys - gn) and the potentlal energy, U(gy, ¢z s -0 ¢p):
L=T-U. 2.1)

In general, we shall be concerned with conservative systems (no
dissipative forces) and with potentials which are not velocity dependent
‘The momentum conjugate to the positional coordinate g; is defined
by the equation
oL -
P = %, (2.2)
In this differentiation, g; and g; are to be treated as independent variables.
The Hamiltonian function for a conservative system is equal to the
sum of the kinetic energy and the potential energy, written as a function
of the ¢’s and p’s. That is to say, Eq. (1.2) must be used to eliminate all
the g; from 7, replacing them with the corresponding p, . For example,
a system consisting of two independent simple harmonic oscillators with

positional coordinates ¢, and g, has the Lagrangian
L = ymgi® + Imeds® — thigy® — hege®. N )

From this we deduce p, = m,§, and p, = mygs, . It follows that the
Hamiltonian has the form '

_

2m,

P kig? kzqs '
+ 2m, + 3 + | (2.4)

The equations of motion of the system are given in the Lagrangian
form by .

T =0 (U=12..n 2.5)
This consists of a set of # second-order differential equations. A particular

solution of these equations gives the complete time dependence of each
positional coordinate.
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Alternatively, the equations of motion can be given in the Hamiltonian
form ‘ :
oH . oH

oH 26
op; ? 9g; 26)

¢; =
a set of 2n first-order equations exactly equivaleht to Egs. (2.5).
Forthe example we considered above, the Lagrangian equations become

mg +kgy =0,  mgy + kgy = 0. @7
The Hamiltonian equations become '
G =plm, gy =pam,,
hr=—haq, ps= —hy,.

Time differentiation of the first, followed by elimination of p, with the
second, yields Eq. (2.7).

The n positional -coordinates and the » conjugate momentum
coordinates that specify a particular configuration of our mechanical
system can be used as the coordinates of a point in a 2n dimensional,
orthogonal cartesian set of axes. The space spanned by these axes is
called phase space. The range of each momentum coordinate is usually
minus infinity to plus infinity; each space variable is allowed to cover its
natural range in such a way that every distinct spacial configuration
correspond to one and only one set of spacial coordinates.

There are two kinds of phase space commonly used. p space (molecular)
has a sufficient member of dimensions to give the conﬁguratlon of one
molecule. The state of a collection of N molecules will be given by

N pomts in p space. y space (gas) has*enough dimensions so that one
point gives thg configuration of all N molecules of a collection simul-
taneously,

Suppose we consider a system with n positional degrees of freedom.
This could be one molecule, composed of n/3 atoms or it could be a
collection of similar or different, interacting or noninteracting molecules or
atoms. In any event, at any instant the configuration of the system is given
by a point in y space. The way that this point moves in time is given by

. the integrals of the equations of motion. If the system is at constant
energy, all possible positions of the representative point will lie on a_
manifold of n — 1 dimensions. The equation of this manifold is

(2.8)

E = H(gy s qn s Prsees PN)- (2.9)



1. Classical Statistical Therrthodynamics 5

In the subsequent discussion, we shall refer to the manifold of the whole
of a phase space of # dimensions as a “volume” and to the manifold of
n — 1 dimensions as a surface. Since our system is at constant energy,
all of its particular integrals of the equations of motion lie in such

surfaces. -

III. Ensembles

A system consisting of a collection of molecules requires the specifi-
cation .of six coordinates (three positional and three momentum) for
each elementary particule (usually an atom) in the system in order to
fixed its detailed, microscopic state. Usually we are concerned with the
gross, macroscopic state only. To specify the macroscopic state one need
only give three thermodynamic variables, if the system consists of only
one type of molecule and one more parameter for each additional
component. These are often taken to be the number of molecules of
each sort, N;, the internal energy, E, and the volume V. Other choices
are possible but this is the only one that has a clear direct relation to the
mechanical specifications of the system. '

In order to apply statistical and probabilistic procedures to the
calculation of gross, over-all or average properties, we need a population
in the statistical sense. J. Willard Gibbs termed a population, consisting
of an infinite collection of (grossly) identical system, each at the same
N, E, and V and present in equal numbers for every distinct microscopic
state, as a microcanonical or pctit ensemble. A system drawn at random
from such a population is a microcanonical or petit system.

If thermal contact or energy exchange is allowed between the members
of this population, only the average energy of each member is fixed.
Such a population is called a canonical ensemble. A canonical system
drawn from this population is called a canonical ensemble. A canonical
system drawn from this population has effectively been prepared by
being in contact with a thermostat at a fixed temperature. '

If the samples are not held at a fixed number of molecules but instead
free, random flow of molecules between samples is allowed (in addition
to thermal flow), we call the population a grand canonical ensemble.

In this chapter we shall take an even broader view, considering all
possible types of contact and exchange between systems. It will not
matter too much if there appear to be experimental difficulty in preparing
some of the more generalized ensembles. Our view is that they are
merely mathematical devices or tools used as intermediates in a practical
calculation. ' :
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IV. Pro.bability.

There has been a great deal of discussion among mathematicians as
to the proper way to define probability. In the following discussion we
shall explain our attitude. The system under consideration will, in
general, be able to exist in a wide variety of microscopic or detailed
states. In classical mechanics these states usually vary continuously; in
quantum mechanics they are more likely to be discrete and denumerable.
The external parameters or constraints imposed on the system may
drastically reduce the number of accessible states.- For example, a
particular system might, in general, be found in a state corresponding -
to any point in its phase space. If it were held at constant energy, only
the points in a particular surface of constant energy would be possible.
We shall postulate that, given a particular mechanical system, with no
further information other than the system’s over-all mechanical structure
(i.e., the analytic form of its Hamiltonian function), all points in its
phase space correspond to equally likely or probable states. That is to
say, if we have no information as to the state of a system, including any
useful information as to’its past history, all states consistent with what
we do known’must be taken as equally probable. Of course, the real
system, at a particular instant, exists in some definite state. We, however,
are ignorant of just which one it is. If the system has additional constraints
imposed upon it (such as the knowledge that it has a particular, constant
energy), all points in its phase space consistent with these constraints are
equally probable states while the remainingones have zero probability.:

We are using the term ‘“probability”’ in the sense of ‘‘expectation.”
Our information about the structure and history of our system gives us
_no right to feel that were we to investigate and determine the actual
state of the system (which would add a great deal of information to our
store), one of the possible results of this determination would be more
likely to be found than another.

Very often we shall be interested in a particular class of states which
have some distinctive property 4.It follows that we shall take the probabil-
ity that our system has property 4 as the volume of phase space consistent
with A eut of the whole of the accessible, equally likely, phase space.

This attitude is exactly analogous to the view we take of the state -
of a die that has been rolled, out of our sight, across the floor. Our
information is that the die is fair and unbiased. The die exists in any.
one of six equally likely states. From our point of vlew, with our a priori
information, the probability that the digit “two” shows is 4. It is
immaterial that a friend may have peeked and know for sure which .
digit shows. Similarly, the probability that an even digit shows is . .
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If the die were biased or loaded, unbeknownst to us, this would not
affect our expectation as to the result of a roll. However, when after
a number of rolls, the actual determination of the state of the die began
to appear inconsistent with our expectations, we should probably begin
to feel upset and either leave the game or provoke a fight. We should
feel cheated in that our information as to the structure of the system
appeated to be at variance with the facts. Our probability calculations
are always made on an abstract model. We must make sure that our
model corresponds to the real physical system that we are really
interested in. ‘ '

These statements must not be confused with predictions as to the
results of a finite number of rolls and determinations. It can be shown
that if the state A has the probability P and if we make N independent
rolls, the fraction of the rolls having the result 4 is most probably P;
furthermore, as N increases without limit, that this most probable
result becomes certainty. In addition, we can calculate the probability
of any given deviation away from the most probable result of N rolls.

As an example of a system with continuous states, we could have a
sphere, marked with one point on its surface and resting on a smooth
plane. The state might be specified by the orientation of the radius vector
from the center of the sphere to the special surface point. If the sphere
were rolled out on a plane, all information as to its initial state would be
quickly lost. All orientations after the sphere comes to rest would be
equally probable. The probability that the radius vector would end up
with a positive upward component would be exactly one half.

The basis of all probability calculations is the a priori assumption
that there exists some collection of microscopic states that are equally
likely. Very often we immediately collect these equally likely states into
sets of varying size, with the members of each set having some special
property in common. We then can construct a probability density
function of the new parameter which gives the expectation that this
parameter (or set of parameters) has a given value. For example, suppose
we choose a point in a unit radius disk in a fair, random, unbiased
fashion. The measure of the set of points at a distance r from the center
is 2nr. The probability that a randomly chosen point will lie at radius r
is then proportional to r. The integral of the probability density over all
possible values of 7 (0~1) must be unity, since by the rules of our game,
the point must lie in the disk. Therefore, ‘

P(r) =2r . ) (4.1)
fl P(r)dr = 1. (4.2)
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~ We see that P(r) dr represents the infinitesimal probability that we shall
find the value » within the range dr.
In general, if P(x) is the probability of observing the value of x,

f P(x)dx =1, | 4.3)

where the integration is taken over the entire possible range of x, i.e.,
at least over the range for which P(x) # 0. Furthermore, P(x) is a
strictly nonnegative function. As a corollary to these arguments, we -
define the average expected value of x as

5 = f xP(x) dx, (4.4)
and the average of any function of x, f(x), as
J® = [Py d. ey

In this sense, & represents the limit of the average ‘of all observed values
of. x as the number of samples from the dlstnbuuon P(x) increases
without limit.

In statistical mechanics the probabnhty density functions, we deal
with often are very sharply peaked, approaching the limit of a Dirac
delta function. Under these circumstances it becomes almost a certainty
that a single observation of f{x) will have the result f(x). The distinction
between the average value of f(x), the most probable value of f(x) and
the value found for f(x) in a single sampling essentially vanishes.

The nth moment of the probablllty functlon P(x) is the aVerage value
of x™:

N f #PEde. @)

We can form a generating function for all the moments, n = 0-co, if
we multiply by t*/n! (tis a dummy variable) and sum over #:

/(z)—z____fedp(x)dx T

n=0

It is frequently just as easy, if not easier, to evaluate the integral that
defines # and expand .# as a power series in ¢ (thereby obtaining all the
moments) as to evaluate directly just one moment.



