Ten Lectures on
Wavelets




INGRID DAUBECHIES
Rutgers University and
AT&T Bell Laboratories

Ten Lectures on
‘Wavelets

\ SOCIETY.FOR INDUSTRIAL AND APPLIED MATHEMATICS

e § ~



Copyright 1992 by the Society for Indgi\rhl and Applied Mathematics

Al rights reserved. No part of tris book may be reproduced, stored, or
transmitted in any manner without the written permission of the Publisher.
For information, write the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, Pennsylvania 19104-2688.

Printed by Capital City Press, Montpelier, Vermont
Second Printing 1992

Library of Congress Cataloging-in-Publication Data

Daubechies, Ingrid. .
Ten lectures on wavelets / ipghid Dau%g_ries :
p. cm. — (CBMS-NSF rediondl contetence series in applied

mathematics ; 61) o .

includes bibliographical references and index.

ISBN 0-89871-274-2

1. Wavelets (Mathematics)—Congresses. I. Title. |l. Series.
QA403.3.D38 1992

® 92-13201
515'.2433—dc20 “



T

Introduction

Wavelets are a relatively recent development in applied mathematics. Their
name itself was coined approximately a decade ago (Morlet, Arens, Fourgeau,
and Giard (1982), Morlet.(1983), Grossmann and Morlet (1984)); in the last ten
years interest in them has grown at an explosive rate. There are several rea-
sons for their present success. On the one hand, the concept of wavelets can be
viewed as a synthesis of ideas which originated during the last twenty or thirty
years in engineering (subband coding), physics (coherent states, renormalization
group), and pure mathematics (study of Calderén-Zygmund operators). As a
consequence of these interdisciplinary origins, wavelets appeal to scientists and
engineers of many different backgrounds. On the other hand, wavelets are a fairly
simple mathematical tool with a great variety of possible applications. Already
they have led to exciting applications in signal analysis (sound, images) (some
early references are Kronland-Martinet, Morlet and Grossmann (1987), Mallat
(1989b), (1989c); more recent references are given later) and numerical analy-
sis (fast algorithms for integral transforms in Beylkin, Coifman, and Rokhlin
(1991)); many other applications are being studied. This wide appheabxlity also
contributes to the interest they generate.

This book contains ten lectures I delivered as the principal speaker at tbe
CBMS conference on wavelets organized in June 1990 by the Mathamatics De-
partment at the University of Lowell, Massachusetts. According to the usual
format of the CBMS conferences, other speakers (G. Battle, G. Beylkin, C. Chui,
A. Cohen, R. Coifman, K. Gréchenig, J. Liandrat, S. Mallat, B. Torrésani,
and A. Willsky) provided lectures on their work related to wavelets. Moreover,
three workshops were organized, on applications to physics and inverse problems
(chaired by B. DeFacio), group theory and harmonic analysis (H. Feichtinger),

_and signal analysis (M. Vetterli). The audience consisted of researchers active

in the field of wavelets as well as of mathematicians and other scientists and
engineers who knew little about wavelets and hoped to learn more. This second
group constituted the largest part of the audience. I saw it as my task to provide
a tutorial on wavelets to this part of the audience, which would then be a solid
grounding for more recent work exposed by the other lectureggy

sequently, about two thirds of my lectures consisted of “ba
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viii ’ INTRODUCTION,

the other third being devoted to more recent and unpublished work. This divi-
sion is reflected in the present write-up as well. As a result, I believe that this
book will be useful as an introduction to the subject, to be used either for indi-
vidual reading, or for a seminar or graduate course. None of the other lectures
or workshop papers presented at the CBMS conference have been incorporated
here. As a result, this presentation is biased more toward my own work than the
CBMS conference was. In many instances I have included pointers to references
for further reading or a detailed exposition of particular applications, comple-
menting the present text. Other books on wavelets pubtished include Wavelets

e and Time Prequency Methods (Combes, Grossmann, and Tchamitchian (1987)),
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which contains the proceedings of the International Wavelet Conference held in
Marseille, France, in December 1987, Ondelettes, by Y. Meyer (1990) (in French;
English translation expected soon), which contains a mathematically more ex-
panded treatment than the present lectures, with fewer forays into other fields
however, Les Ondelettes en 1989, edited by P. G. Lemarié (1990), a collection of
talks given at the Université Paris XI in the spring of 1989, and An Introduction
to Wavelets, by C. K. Chui (1992b), an introduction from the approximation
theory viewpoint. The proceedings of the International Wavelet Conference in
May 1989, held again in Marseille, are due to come out soon (Meyer (1992)).
Moreover, many of the other contributors to the CBMS conference, as well as
some wavelet researchers who could not attend, were invited to write an essay
on their wavelet work; the result is the essay collection Wavelets and their Ap-
plications (Ruskai et al. (1992)), which can be considered a companion book to
this one. Anothet wavelet essay book is Wavelets: A Tutorial in Theory and
Applications, edited by C. K. Chui (1992c); in addition, I know of several other
wavelet essay books in preparation (edited by J. Benedetto and M. Frazier, an-
other by M. Barlaud), as well as a monograph by M. Holschneider; there was
a special wavelet issue of IEEE Trans. Inform. Theory in March of 1992; there
will be another one, later in 1992, of Constructive Approzimation Theery, and
one in 1993, of IEEE Trens. Sign. Proc. In addition, several recent books in-
clude chapters on wavelets. Examples are Multiraie Systems and Filter Banks
by P. P. Vaidyanathan (1992) and Quantum Physics, Relativity and Complex
Spacetime: Towards a New Synthesis by G. Kaiser (1990). Readers interested
in the present lectures will find these books and special issues useful for many

i ‘details and other aspects not fully presented here. It is moreover clear that the

subject is still developing rapidly.
This book more or less follows the path of my lectures: each of the ten chap-
ters stands for one of the ten lectures, presented in"the order in which they
were delivere _ T first chapter presents a quick overview of different aspects
of the wavele “transform. It sketches the outhnes ofa big fresco; subsequent
chapters then fill in more detail. From' there on, we proceed to the continu-
ous wavelet transform (Chapter 2; with a short review of bandlimited functions
and Shannon’s theorem), to discrete but redundant wavelet transforms (frames;
Chapter 3) and to a general discussion of time-frequency density and the possible
existence of orthonormal basis (Chapter 4). Many of the results in Chapters 24
can be formulated for the windowed Fourier transform as well as the wavelet ’
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INTRODUCTION ix

transform, and the two cases are presented in parallel, with analogies and differ-
ences pointed out as we go along. The remaining chapters all focus on orthonor-
mal bases of wavelets: multiresolution analysis and a first general strategy for
the construction of orthonormal wavelet bases (Chapter 5), orthonormal bases
of compactly supported wavelets and their link to subband coding (Chapter 6),
sharp regularity estimates for these wavelet bases (Chapter 7), symmetry for
compactly supported wavelet bases (Chapter 8). Chapter 9 shows that orthonor-
mal bases are “good” bases for many functional spaces where Fourier methods
are not well adapted. This chapter is the most mathematical of the whole book;

»

~ N

most of its material is not connected to the applications discussed in other chapeeee
ters, so that it can be skipped by readers uninterested in this aspect of wavelet..

theory. I included it for several reasons: the kind of estimates used in the proof
are very important for harmonic analysis, and similar (but more complicated)
estimates in the proof of the “T(1)”-theorem of David and Journé have turned
out to be the groundwork for the applications to numerical analysis in the work
of Beylkin, Coifman, and Rokhlin (1991). Moreover, the Calderén-Zygmund
théorem, explained in this chapter, illustrates how techniques using different
scales, one of the forerunners of wavelets, were used in harmonic analysis long
before the advent of wavelets. Finally, Chapter 10 sketches several extensions
of the constructions of orthonormal wavelet bases: to more than one dimension,
to dilation factors different from two (even noninteger), with the possibility of
better frequency localization, and to wavelet bases on a finite interval instead
of the whole line. Every chapter concludes with a section of numbered “Notes,”
referred to in the text of the chapter by superscript numbers. These contain
additional references, extra proofs excised to keep the text flowing, remarks, etc.

This book is a mathematics book: it states and proves many theorems. It

L o

also presupposes some mathematical background. In particular, I assume that

the reader is familiar with the basic properties of the Fourier transform and
Fourier series. I also use some basic theorems of measure and integration theory
(Fatou’s lemma, dominated convergence theorem, Fubini’s theorem; these can
be found in any good book on real analysis). In some chapters, familiarity with
" basic Hilbert space techniques is useful. A list of the basic notions and theorems
used in the book is given in the Preliminaries.
The reader who finds that he or she.does not know all of these prerequisites
should not be dismayed, however; most of the book can be followed w:th just the

basic notions of Fourier analysis. Moreover, I have tried to keep a very pedes-

trian pace in almost all the proofs, at the risk of boring some mathematically
sophisticated readers. I hope therefore that these lecture notes will interest peo-
ple other than mathematicians. For this reason I have often shied away from
the “Definition-Lemma-Proposition-Theorem-Corollary” ¥quegite, and I have
tried to be intuitive in many places, even if this meant that the exposition be-
came less succinct. I hope to succeed in sharing with my readers some of the
excitement that this interdisciplinary subject has brought into my scientific life.

I want to take this opportunity to express my gratitude to the many people
who made the Lowell conference happen: the CBMS board, and the Mathematics
Department of the University of Lowell, in particular Professors G. Kaiser and
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M. B. Ruskai. The success of the conference, which unexpectedly turned out to
have many more participants than customary for CBMS conferences, was due in
large part to its very efficient organization. As experienced conference organizer
L. M. James (1991) says, “every conference is mainly due to the efforts of a
single individual who does almost all the work”; for the 1990 Wavelet CBMS
conference, this individual was Mary Beth Ruskai. I am especially grateful to
her for proposing the conference in the first place, for organizing it in such
a way that [ had a minimal paperwork load, while keeping me posted about
all the developments, and for generally being the organizational backbone. no’
small task. Prior to the conference I had the opportunity to teach much of this
W \,~material as a graduate course in the Mathematics Department of the University
¥ of Michigan, in Ann Arbor. My one-term visit there was supported jointly by
a Visiting Professorship for Women from the National Science Foundation, and
by the University of Michigan. I would like to thank both institutions for their
support. I would also like to thank all the faculty and students who sat in on
the course, and who provided feedback and useful suggestions. The manuscript
was typeset by Martina Sharp, who I thank for her patience and diligence, and
for doing a wonderful job. I wouldn’t even have attempted to write this book.
without her. I am grateful to Jeff Lagarias for editorial comments. Several people
helped me spot typos in the galley proofs, and I am grateful to all of them; I
would like to thank especially Pascal Auscher, Gerry Kaiser, Ming-Jun Lai, and
Martin Vetterli. All remaining mistakes are of course my responsiblity. I also
would like to thank Jim Driscoll and Sharon Murrel for helping me prepare the
author index. Finally, I want to thank my husband Robert Calderbank for being
extremely supportive and committed to our two-career-track with family, even
though it occasionally means that he as well as I prove a few theorems less.

.

Ingrid Daubechies

t _ AT¥T Bell Laboratories
, : and

Rutgers University

j In this second printing several minor mistakes and many typographical errors

“ "have been corrected. I am grateful to everybody who helped me to spot them.
TE- I have also updated a few things: some of the previously unpublished references
; have appeared and some of the problems that were listed as open have been bt
solved. I have made no attempt to include the many other interesting papers
on wavelets that have appeared since the first printing; in any case, the list
of references was not and is still not meant as a complete bibliography of the
" subject.

-

Ingrid Daubechies, Sept. 1992
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Preliminaries and Notation

This preliminary chapter fixes notation conventions and normalizations. It also -

states some basic theorems that will be used later in the book. For those less
familiar with Hilbert and Banach spaces, it contains a very brief primer. (This
primer should be used mainly as a reference, to come back to in those instances
when the reader comes across some Hilbert or Banach space language that she
or he is unfamiliar with. For most chapters, these concepts are not used.)

Let us start by some notation conventions. For z € R, we write |z] for the
largest integer not exceeding z,

lz)=max {n€Z n<cz}.

For example, [3/2] =1, |-3/2] = -2, | -2 = -2. Siggilarly, [z] is the smallest
integer which is larger than or equal to z. »

If a—0 (or 0o), then we denote by O(a) any quatity that is bounded by a
constant times a, by o(a) any quantity that tends to & {or 0o) when a does.

The end of a proof is always marked with a »; for clarity, many remarks or
examples are ended with a o.

In many proofs, C denotes a “generic’ constant, which need not have
the same value throughout the proof. In chains of inequalities, I often use
cc,c”, .. or Cy,Cq,Cs, - to avoid confusion.

We use the following convention for the Fourier tramsform (in one dimension):

-

iy L * —iz§
(}-f)(f)_f(g)“ \/2_1|' /_wdme f(z) . . (0.0.1)
With this normalization, one has

Wil = Wl
e < @MV fln,

¥

where

mu = [ / dz lfb)t’]l/p . (0.0.2)

4 "
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xii . PRELIMINARIES AND NOTATION

Inversion of the Fourier transform is then given by

f0) = == [CdgeeEn© = Fn.
(0.0.3)
o) = 9(-n).

Strictly speaking, (0.0.1), (0.0.3) are well defined only if f, respectively F f, are
absolutely integrable; for general L2-functions f, e.g., we should define F via
a limiting process (see also below). We will implicitly assume that the adequate

limiting process is used in all cases, and write, with a convenient abuse of no-

tation, formulas similar to (0.0.1) and (0.0.3) even when a limiting process is
understood.
A standard property of the Fourier transform is:

¢
7 (het) = 60" e
hence

/'i’ IS < 00 - /‘15 e 1€ < oc

with the notation f{8) = dd; )
If a function f is compactly supported, i.e., f(z) = 0if 2z < aor x > b,
where —00 < a < b < 00, then its Fourier transform f(£) is well defined also for

complex &, and

R b
fen < @2 [ iz eimor ipio)
- b (Imé§) if T 0
.S (271’) 12 “f”l‘ { Zu (Imé¢) :f IEE;O

If f is moreover infinitely differentiable, then the same argument can be applied
to f{¢, leading to bounds on |¢|* |f(€)]. For-a C*™ function f with support [a, b]
there exist therefore constants Cn so that the analytic extension of the Fourier

- transform of f satisfies

. ‘ bIméE
o< ent s { % 1 Imezo

(0.0.4)
Conversely, any entire function which satisfies bounds of the type (0.0.4) for all
N € N is the analytic extension of the Fourier transform of a C™ function with
support in [a, b]. This is the Paley-Wiener theorem.

We will occasionally encounter (tempered) distributions. These are linear
maps T from the set S(R) (consisting of all C*™ functions that decay faster than
any negative power (1 + |z[)" V) to C, such that for all m,n € N, there exists
C'y.m for which
' IT(f)] < Cam sup |(1+]z)” F™(2)]

T€E



PRELIMINARIES AND NOTATION xiii

hoids, for all f € S(R). The set of all such distributions is called S'(R). Any
polynomially bounded function F can be interpreted as a distribution, with
F(f) = [dzx F(z) f(z). Another example is the so-called “6-function” of Dirac,
8(f) = f(0). A distribution T is said to be supported in [a,b] if T(f) = 0 for
all functions £ the support of whicii has cmpty intersection with [a, b]. One can
define the Fourier transform FT or T of a distribution T by T(f) = T(f) (if
T is a function, then this coincides with our earlier definition). There exisPs a
version of the Paley Wiener theorem for distributions: an entire function 7(§)
is the analytic extension of the Fourier transform of a distribution T in &’(R)
supported in {a, b] if and only if, for some N € N, C'y > 0,

. . . b Im¢ I 20
IT({)IS(N(I‘*‘I‘EI)N { za Im¢ II:ESO

The only measure we will use is Lebesgue measure, on R and R". We will
often denote the (Lebesgue) measure of S by |S|: in particular, |[a,b]] = b—a
(where b > a).

Well-known theorems from measure and integration theory which we will use
include

Fatou’s lemma. If fn > 0, falx) — f(z) almost everywhere (i.e., the set
of points where pointunse convergence fm!s has zero measure with respect to
Lebesgue measure), then

/dr f(z) < limsup /d:r folz

n-—00

In particular, if this limsup is finite, then f is integrable.

(The limsup of a sequence is defined by

limsup a, = lim [sup {ak; k > n}};

n—oo

every sequence, even if it does not have a limit (such as a, = (—1)"), has a
limsup (which may be 00); for sequences that converge to a limit, the limsup
coincides with the limit.)

Dominated convergence theorem. Suppose f,(x) — f(z) almost every-

where. If |fo(z)| < g(z) for all n, and [dz g(z) < oo, then f is integrable,
_ and ,

[ de 1) = him, [ dz fu(2)

Fubini’s theorem. If [ dz[[ dy |f(z,y)l] < oo, m;n
/da:/dy‘ [(z,y) /d:c [/dy f(:z:,y)]
Jo lforen]
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xiv PRELIMINARIES AND NOTATION

i.e., the order of the integrations can be permuted.

In these three theorems the domain of integration can be any measurable
subset of R (or R? for Fubini).

When Hilbert spaces are used, they are usually denoted by *, unless they
already have a name. We will follow the mathematician’s convention and use
scalar products which are linear in the first argument:

C(Arug 4+ Aquz, v) = Ag(ur, v) + Ao(us, v) .

.
As usual, we have

(v,u) = (u,v) ,
where & denotes the complex conjugate of a, and (u,u}) > 0 for all u € H. We
define the norm {|u|| of u by \

llull? = (u,u) . (0.0.5)
In a Hilbert space, ||ul] = 0 implies u = 0, and all Cauchy sequences (with
respect to || ||) have limits within the space. (More explicitly, if u, € H and if
llun — uml| becomes arbitrarily small if n, m are large enough—i.e., for all € > 0,
there exists ng, depending on ¢, so that |ju, — unl|| < € if n,m > ng—, then there
exists u € M so that the u, tend to u for n—oo, i.e., limp o0 |4 — unl|| =0.)

A standard example of such a Hilbert space is L2(R), with

mm=/MKnHE-

Here the integration runs from —oo to oo; we will often drop the integration
bounds when the integral runs over the whole real line.

Another example is £2(Z), the set of all square summable sequences of com-
plex numbers indexed by integers, with

00

<C,d>= Z cnd—:

n=-+gco

Again, we will often drop the limits on the summation index when we sum
over all integers. Both L?(R) and ¢2(Z) are infinite-dimensional Hilbert bases.
Even simpler are finite-dimensional Hilbert spaces, of which C* is the standard
example, with the scalar product

k
(o)=Y u; 7,
s

' foru=(u1,-~-,uk),v=(u1,--~,v;,)€C".

Hilbert spaces always have orthonormal bases, i.e., there exist families of
vectors e,, in H

(em em) = 6n,m

= 3w, ea)f?

and
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for all u € H. (We only consider separable Hilbert spaces, i.e., spaces in which
orthonormal bases are countable.) Examples of orthonormal bases'are the Her-
mite functions in L2(R), the sequences e, defined by (e, ); = 6, withn,j € Z
in ZZ(Z) (i.e., all entries but the nth vanish), or the k vectors e;,---,ex in ck
defined by (e7)m = 6s.m, with 1 < ¢, m < k. (We use Kronecker’s symbol é with
the usual meaning: §; ; = 1ifi=7,0if i # j.)

A standard inequality in a Hilbert space is the Cauchy--Schwarz inequality,

(v, w)| < ol flwl] , (0.0.6)

easily proved by writing (0.0.5) for appropriate linear combinations of v and w.
In particular, for f,g € L?(R), we have

l [ s s 50| < ( [ ums?)m ( / d% m(z):?)m ,

and for ¢ = (cx)nez, d = (dn)ncz € £2(Z),

Y cndn < (; Icnl"’)l/

n

2

~(Z nd;P)m 4

flul = sup  |J(u,0)]= sup |(u,v)]. (0.0.7)

v, ffv)i€1 v, fivfi=1

A consequence of (0 0.6) is

“Operators” on H are linear maps from H to another Hilbert space, often M
itself. Explicitly, if A is an operator on H, then

A(/\lux + Azuz) = M Au; + A Au, .

An operator is continuous if Au — Av can be made arbitrarily small by making
u - v small. Explicitly, for all € > 0 there should exist 6§ (depending on €) so
that [ju — v| £ § implies [|Au — Av|] < e. If we take v = 0, € = 1, then we
find that, for some b > 0, ||Aulj < 1 if Jjul) < b. For any w € H we can define
w = H%“w; clearly flw']] < b and therefore [|Aw| = ll';_’ll (Aw']| < b= jw|l. If
lAwl|/llw]l (w # 0) is bounded, then the operator A is called bounded. We have
just seen that any continuous operator is bounded; the reverse is also true. The
norm {| Af} of A is defined by

A= sup JlAull/|jull = sup |lAuff. (0.0.8)
#0 i

ueH, |lu ujf=1

It immediately follows that, for all ©v € H,
hAull < 1A]l flull .

Operators from H t8 C are called “linear functionals.” For bounded linear
functionals one has Riesz’ representation theorem: for any £: H—C, linear and
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bounded, i.c., [£(u)| < C|lu|| for all u € H, there exists a unique v, € H so that
(u) = (u,v).

An operator U from H, to Hy is an isometry if (Uv,Uw) = (v, w) for all
v,w € Hy; U is unitary if morcover UH; = H,, i.e., every element va € Ha can
be written as v = Uv, for some v; € Hy. If the e, constitute an orthonormal
basis in ‘M, and U is unitary, then the Ue, constitute an orthonormal basis in
Ha. The reverse is also true: any operator that maps an orthonormal basis to
another orthonormal basis is unitary.

A set D is called dense in M if every v € H can be written as the limit of
some sequence of u, in D. (One then says that the closure of 12 is all of H. The
closure of a set S is obtained by adding to it all the v that can be obtained as
limits of sequences in S.) If Av is only defined for v € D, but we know that

[fAv|| < Cllv)| for aliv e D, (0.0.9)

then we can extend A to all of H “by continuity.” Explicitly: if v € X, find
wn € D so that imy, ., 4, = u. Then the u, are necessarily a Cauchy sequence,
and because of (0.0.9), so are the Auy,; the Au,, have therefore a limit, which we
call Au (it does not depend on the particular sequence u,, that was chosen).
One can also deal with unbounded operators, i.e., A for which there exists
no finite C such that ||Au|| < C|lul| holds for all u € H. It is a fact of life that
these can usually only be defined on a dense set D in H, and cannot be extended
by the above trick (since they are not continuous). An example is 345 in L%(R),
where we can take D) = C7(R), the set of all infinitely differentiable functions
with compact support, for D. The dense set on which the operator is defined is
called its domain. .
Tne adjoint A* of a bounded operator A from a Hilbert space H; to a Hilbert
space H, {(which may be H; itself) is the operator from H; to M, defined by

(ur1, A*ug) = (Auy, u)

which should hold for all u; € H;, us € Hy. (The existence of A* is guaranteed
by Riesz’ representation theorem: for fixed u;, we can define a linear functional
€ on Hy by €(u;) = (Auy,uy). It is clearly bounded, and corresponds therefore
to a vector v so that (u;,v) = ¢(u). It is easy to check that the correspondence
ug->v is linear; this defines the operator A*.) One has

ATl =114, [1A*Af = (412

If A* = A (only possible if A maps H to itself), then A is called self-adjoint. If
a self-adjoint operator A satisfies (Au,u) > 0 for all u € ¥, then it is called a
positive operator; this is often denoted A > 0. We will write A> Bif A — B is
a positive operator.

Trace-class operators are special operators such that 3 |(Ae,,e,)| is finite
for all orthonormal bases in H. For such a trace-class cperator, > (Aen,en) is
independent of the chosen orthonormal basis; we call this sum the trace of A,

tr A= E (Aen,e,) .
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If A is positive, then it is sufficient to check whether Y (Aen, e,) is finite for
only one orthonormal basis; if it is, then A is trace-class. (This is not true for
non-positive operators!)

The spectrum o(A) of an operator A from H to itself consists of all the
A € C such that A — Ald (Id stands for the identity operator, Idu = u) does
not have a bounded inverse. In a finite-dimensional Hilbert space, v(A) consists
of the eigenvalues of A; in the infinite-dimensional case, o(A) contains all the
eigenvalues (constituting the point spectrum) but often contains other X as well,
constituting the continuous spectrum. (For instance, in L?(R), multiplication of
f(z) with sinmz has no point spectrum, but its continuous spectrum is {-1,1].)
The spectrum of a self-adjoint operator consists of ouly real numnbers; the spec-
trum of a positive operator contains only non-negative numbers. The spectral
radius p(A) is defined by

p(A) =sup {|Al; Aeo(A)}.
It has the properties
p(A) < |IA|l and p(A) = lim jA™|'/™ .
n-o+00

Self-adjoint operators can be diagonalized. This is casiest to understand if
their spectrum consists only of eigenvalues (as is the case in finite dimensions).
One then has

a(A) = {A;; ne N},

with a corresponding orthonormal family of cigenvectors,
Ae,, = Ape, .

It then follows that, for all u € H,

Au = Z (Au,en)e, = Z (u, Ae,)e, = Z/\n(u, en)en ,

n

which is the “diagonalization” of A. (The spectral theorem permiits us to gen-
eralize this if part (or all) of the spectrum is continuous, but we will not need it
in this book.) If two operators commute, i.e., ABu = BAu for all u € H, then
they can be diagonalized simultaneously: there exists an orthonormal basis such
that

Ae, = ane, and Be, = fB,¢e, .

Many of these properties for bounded operators can also be formulated for un-
bounded operators: adjoints, spectrum, diagonalization all exist for unbounded
operators as well. One has to be very careful with domains, however. For in-
stance, generalizing the simultaneous diagonalization of commuting operators
requires a careful definition of commuting operators: there exist pathological
examples where A, B are both defined on a domain D, where AB and BA both

make sense on D and are equal on D, but where A and B nevertheless are not .

X
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simultaneously diagonalizable (because D was chosen “too small”; see, e.g., Reed
and Simon (1971) for an example). The proper definition of commuting for un-
bounded self-adjoint operators uses associated bounded operators: H, and H3
commute if their associated unitary evolution operators commute. For a self-
adjoint operator H, the associated unitary evolution operators U, are defined as
follows: for any v € D, the domain of H (beware: the domain of a self-adjoint
operator is not just any dense set on which H is well defined), Uzv isthe solution
v(t) at time ¢t = T of the differential equation

l— v(t) = Hu(t) ,

with initial condition v(0) = v.

Banach spaces share many properties with but are more general than Hilbert
spaces. They are linear spaces equipped with a norm (which need not be and
generally is not derived from a scalar product), complete with respect to that
norm (i.e., all Cauchy sequences converge; see above). Some of the concepts
we reviewed above for Hilbert spaces also exist in Banach spaces; e.g., bounded
operators, linear functionals, spectrum and spectral radius. " An example of a
Banach space that is not a Hilbert space is LP(R), the set of all functions f on R
such that || f]l.» (see (0.0.2)) is finite, with 1 < p < oo, p # 2. Another example
is L(R), the set of all bounded functions on R, with || fli = = ssup_ g |f(z)}.
The dual E* of a Banach space E is the set of all bounded linear functionals
on E; it is also a linear space, which comes with a natural norm (defined as in
(0.0.7)), with respect to which it is complete: E* is a Banach space itself. In the °
case of the LP-spaces, 1 < p < 00, it turns out that elements of L9, where p and
q are related by p~! + ¢~! = 1, define bounded linear functionals on LP. Indeed,
one has Hoélder’s inequality, -—

< flize Hgllze -

/ dz f(z) 3(2)

It turns out that all bounded linear functionals on LP are of this type, i.e.,
(LP)* = L. In particular, L? is its own dual; by Riesz’ representation theorem
(see above), every Hilbert space is its own dual. The adjoint A* of an operator
A from E; to E; is now an operator from Ej to E}, defined by

(4*62)(n1) = £2(Avny) .

There exist different types of bases in Banach spaces. (We will again only
consider separable spaces, in which bases are countable.) The e, consti-
tute a Schauder basis if, for all v € E, there exist unique p, € C so that
v=limy_ oo Zn_ tnen (ie, Jlv— E:': finén||—0 a8 N—oo). The uniqueness
requirement of the yu,, forces the e, to be linearly independent, in the sense that
po e, can be in the closure of the linear span of all the others, i.e., there exist no
Ym 80 that e,, = impy_ o Z 1, m#n Ym€m. In a Schauder basm the ordering
of the e, may be important. A basis is called unconditional if in addition it
satisfies one of the following two equivalent properties:
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e whenever anen € E, it follows that Z ltnlen € E

T

o if Zunen € E, and ¢, = =1, randomly chosen for every n, then

n
Z/Lnfnf?" €E.
— ‘

For an unconditional basis, the order in which the basis vectors are taken does
not matter. Not all Banach spaces have unconditional bases: L'(R) and L*®(R)
do not.

In a Hilbert space H, an unconditiona! basis is also called a Riesz basis. A

Riesz basis can also be characterized by the following equivalent requlrement "

there exist a > 0, 8 < oo so that

allull < Y uea)? < Blul? (0.0.10)

for all u € H. If A is a bounded operator with a bounded inverse, then A
maps any orthonormal basis to a Riesz basis. Moreover, all Riesz bases can be
obtained as such images of an orthonormal basis. In a way, Riesz bases are the
next best thing to an orthonormal basis. Note that the inequalities in (0.0.10)
are not sufficient to guarantee that the e, constitute a Riesz basis: the ¢, also
need to be linearly independent!
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