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Introduction

The deep relationship between linear algebra and the arithmetical properties
of polynomial rings is well understood, and a highlight is naturally Jordan’s
classification theorem for linear transformations on a finite-dimensional vector
space. The methods and results of finite-dimensional linear algebra seldom ex-
tend to, or have analogues in, infinite-dimensional operator theory. Thus it is
remarkable to have a class of operators whose properties are closely related with
the arithmetic of the ring H* of bounded analytic functions in the unit disc and
for which a classification theorem is available, analogous to Jordan’s classical
result. Such a class is the class Cp, discovered by B. Sz.-Nagy and C. Foiag in
their work on canonical models for contraction operators on Hilbert space. A

- contraction operator belongs to this class if and only if the associated functional

calculus on H* has a nontrivial kernel. The class Cp is the central object of
study of this monograph, but we have included other related topics where it
seemed appropriate. In an effort to make the book as self-contained as possible
we give an introduction to the theory of dilations and functional models for con-
traction operators (see Chapters 1 and 5). While this introduction is adequate
for our purposes, the reader familiar with the basic book [6] by Sz.-Nagy and
Foiag will be able to put the subject matter of this monograph in a greater per-
spective. Prerequisites for this book are a course in functional analysis (Rudin
[2], for instance, will cover most of what we need) and an acquaintance with the
theory of Hardy spaces in the unit disc (either Hoffman [1] or Duren [1] covers
the required material). In addition, knowledge of the trace class of operators is
needed in Chapter 6 (see, for example, Gohberg and Krein [1]).

Quite possibly, the class Cp is the best understood class of nonnormal op-
erators on a Hilbert space, even though there are still unsolved problems and
unexplored avenues. Besides its intrinsic interest and direct applications, oper-
ators of class Cy are very helpful as a source of inspiration, and in constructing
examples and counterexamples in other branches of operator theory. Interest-
ingly, the class Cy also surfaces in certain problems of control and realization
theory. It is hoped that this book will be interesting for operator theorists
(present or to be), as well as those theoretical engineers who are interested in
the applications of operator theory.

xi



xii INTRODUCTION

I tried to make this book more useful by including a number of exercises for
each section. The numbering of theorems, propositions, etc. is conceived such as
to make cross-references easy. For instance, Theorem 8.1.8 is in §1 of Chapter
8, and it is followed by relation (8.1.9) and Lemma 8.1.10. The first numeral
is omitted for references within the same chapter. Each chapter begins with
a description of the material to be covered. References to the literature and
historical comments are kept to a minimum in the text. There is an appendix
dedicated to these questions. '

My teachers, colleagues, and friends Ciprian Foiag, Carl Pearcy, Béla Sz.-
Nagy, and Dan Voiculescu encouraged me at various times to write this book.
Part of the book or earlier versions of some chapters were written while I was
at the University of Michigan, the Massachusetts Institute of Technology, the
Mathematical Sciences Research Institute, and Indiana University. Much of the
material was presented in a seminar at the University of Michigan. I am grateful
to all of these institutions for their hospitality and to some of them for help in
typing the manuscript.

My wife Irina, with her exceptional talent and warmth, has been an inspiration’
for me during most of my mathematical life. Irina helped me get through difficult
times and gave me determination and ambition when I lacked them. This book
is dedicated to her memory.

Hari Bercovici
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CHAPTER 1

An Introduction to Dilation Theory

Any contraction, i.e., operator of norm < 1, on a Hilbert space has a unitary
dilation. This is Sz.-Nagy’s theorem, and it was the starting point of an impor-
tant branch in operator theory. In this chapter we give the basic elements of
dilation theory, which will help us enter the subject proper of the book in Chap-
ter 2. In Section 1 we present Sz.-Nagy’s dilation theorem mentioned above.
As a consequence we deduce the decomposition of any contraction into a direct
sum of unitary and completely nonunitary parts. We also give a proof of the
commutant lifting theorem, which relates the commutant of a contraction with
the commutants of its isometric and unitary dilations. Section 2 contains more
detailed information about the minimal isometric dilation of an operator. It is
shown that the completely nonunitary summand of an isometry is a unilateral
shift, and conditions are given on an operator which ensure that its minimal
isometric dilation is a unilateral shift. An important result concerns the abso-
lute continuity (with respect to Lebesgue arclength measure on the unit circle)
of the minimal unitary dilation. In Section 3 we discuss the notions of cyclic
multiplicity, quasisimilarity, and quasiaffine transforms. The latter two notions
are weak forms of similarity. The most important result (Theorem 3.7) relates
an operator T', with small cyclic multiplicity, to a simpler operator. This result
is the starting point of the classification theory of operators of class Cj.

1. Unitary dilations of contractions. Let T be a contraction on the
Hilbert space #. We will use the following notation:

Dr=({I-T*T)?  Dr.=(I-TT*)'?,

(1.1) " _
97' = (ran DT) N g'r- = (ra.n DTs) .

The operator Dr is called the defect operator of T and Dr the defect space.
Using the functional calculus for selfadjoint operators, it is easy to see that the
obvious relation T(I — T*T) = (I — TT*)T implies

(1.2) TDr = Dr.T.

In particular, we have T2r C Dr-.
Easier to understand among contractions are the isometric and unitary oper-
ators. Arbitrary contractions can be related to isometries using dilations. We

1



2 AN INTRODUCTION TO DILATION THEORY

recall that if % is a Hilbert space, # C % is a subspace, S € (%), and
T € Z(#), then S is a dilation of T (and T is a power-compression of S)
provided that
Tt =PeS™|#, n=0,1,2,....

If, in addition, S is an isometry (unitary operator) then S will be called an
isometric (unitary) dilation of 7. An isometric (unitary) dilation S of T is said
to be minimal if no restriction of § to an invariant subspace is an isometric
(unitary) dilation of T". The following result is left as an exercise.

1.3. LEMMA. Let S be an isometric (unitary) dilation of T. Then S s
a minimal isometric (unitary) dilation of T if and only if \|7o  S"# = F
(V2 SN¥ =F).

n=-oo

The proof of the next result is motivated By the following calculation:
lzl|? = ITzl|® = (2,2) - (T*Tz,2) = | Dral’, z€#,

which shows that the operator X : # — # @& # defined by Xz = Tz @ Drx
is isometric. Of course, X is not a dilation of T because it acts between two
different Hilbert spaces.

1.4. THEOREM. Every contraction T € L (#) has a minimal tsometric
dilation. This dilation is unique in the following sense: of S € Z(F) and
S' € L (') are two minimal isometric dilations for T, then there ezists an
isometry U of F onto ' such that Uz =z, z€ H, and S'U = US.

PROOF. We first prove the uniqueness part. Thus, let S € (%) and
S' € F(F") be two minimal isometric dilations of T and note that, by Lemma
1.3, we have ' '

H = v s"¥, A= {7 §"#.
n=0 n=0

If {z;}%2, is a finitely nonzero family of vectors in #, we have
o0
Z Siz,
=0

Since S is an isometry, we have (§7z;, S*zy) = (87'2;,S¥ zx)ifk—j =k ~J'
and therefore

2 00 )
= Y (87z;,5%zy).
3,k=0

0o ' 2 )
ZS]'IJ' = Z(Sj—k:rj,.’l:k)+Z(Zj,5k_31‘k)
7=0 2k i<k
= (87 %z, Pyar) + ) (Pre;, 55 2k)
j>k i<k
= Z(Pij'kz,»,zk) + Z(z,-,szSk‘jxk)
izk i<k’

=S (@ ka3 + ) (25, TV a),

ik i<k



UNITARY DILATIONS OF CONTRACTIONS 3

where we used the fact that S is a power-dilation of T'. A similar computation for
S’ shows that || 3272, S7z;{| = || X520 S” z;||. This easily implies the existence
of an isometry U of Z onto 7’ satisfying

(o]

oo
US> 87z | =) 8",
7=0

=0

for every finitely nonzero sequence {2:]-}]9‘;0 in #. Clearly then Uz = z, z € #,
and S'U = US, so that uniqueness is proved.
For the existence part, we define the space Z} by

X, =& (@9,,),, D, =27, n=0,1,2,...,

n=0

and the operator U, € £ (%} ) by

fo(@9) (@)

where ey = Drz and e, = dn—1, n > 1. Since ||Tz||? + || Drz||® = ||z|?, it is
obvious that U, is an isometry. It is also clear that U, is an isometric dilation
of T, if we identify the vector z € # with the vector z & (@,~,0) € Z; in
fact /# is invariant under U} and T* = U} | #. It remains to be shown that
U, is minimal. It is clear that # v U,# contains all elements of the form
00 Drz®06& -, z€#, so that

HNUFH =FODro{0}a- .

It now follows from the definition of U, that

VUi =X oDrePro  0Ira{0}e

7=0

n times
and the minimality of U, follows from Lemma 1.3.
The following result is the counterpart of Theorem 1.4 for unitary dilations.

1.5. THEOREM. Every contraction T € Z(#) has a minimal unitary
dilation, unique tn the sense specified in Theorem 1.4.

PROOF. The uniqueness is proved using the same calculation as in the proof
of Theorem 1.4, except that one would consider sums of the form Z;‘;_oo SJ'zJ,
z; € & . In order to prove the existence of a minimal unitary dilation we consider
the space Z defined as

0 oo
x=| P &loxe|DI|.

j=-—o0 =0



4 AN INTRODUCTION TO DILATION THEORY

where &_; = P@r- and Z; = Dr, j =0,1,2,..., and the operator U € Z(¥)
defined by

((8)-(8)-(80-(a)

where ¢’ = Tz + Dr-eq, dy = —T*eo + Drz, d;- =d;_1,7 > 1, and e;- =e_1,
7 < 0. The space %, constructed in the previous proof, can be identified with
{0} ® F, C &, and clearly Uy = U | #,. It follows at once that U becomes a
dilation of T upon the identification of # with {0} & # & {0} C #. In order
to show that U is unitary it suffices to show that U and U™ are isometries. The
fact that U is an isometry is equivalent to the identity

IT2 + Dr-eol| + || = T*eo + Drall® = |leoll® + |z|*, €0 € Dr-, z€#.
The left-hand side of this identity can be rewritten as follows:

ITz|? + || Dr-eol|? + 2 Re(Tz, Dr-€o) + ||T €0l |?
+ ||Drzl|* - 2 Re(Drz, T*eo)

= ||zl|* + |leo||* + 2 Re|(z, T* Dr-e0) ~ (z, DrT*eo)),

and the required identity follows from (1.2) applied to T*. The minimality of U
and the fact that U* is also an isometry are left as exercises.

As noted above, the space &, constructed in the proof of Theorem 1.4 can
(and shall) be considered as a subspace of %, invariant under U:

U+=U|.Z+.

Thus U is also a minimal unitary dilation of U;. In fact U* is the minimal
isometric dilation of U} and therefore a different proof of Theorem 1.5 would
consist in showing that the minimal isometric dilation of an operator of the form
U} is always unitary. We chose the above proof because it is more difficult to
identify the defect space of U} in terms of the original operator T

1.6. DEFINITION. A contraction T € (%) is said to be completely nonuni-
tary if there is no invariant subspace .# for T such that T | .# is a unitary
operator.

An important consequence of Theorem 1.5 is the following.

1.7. PROPOSITION. For every contraction T € & (#') there ezist reducing
subspaces Ay, # for T such that
() #=HoH;
(ii) T | A is completely nonunitary; and
(iii) T | # s a unitary operator.
The spaces % and #, are uniquely determined by conditions (i)—{iii).

PROOF. Let U € £ (%) be a minimal unitary dilation of T. Denote by

%, the reducing subspace for U generated by ¥ © # and set % = % © 7.
Obviously # C # and Tz = Uz, z € #, because # reduces U. Thus 4 is
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reducing for T and T | # = U | # is unitary. We now set # = % © 4 and
prove that T | /#] is completely nonunitary. If .# C # is invariant for T and
T | A4 is unitary then the equalities ‘

k]| = [|Th|| = ||PxURll, he.#,

imply that Th = Uh for h € #. Thus .# is invariant for U, U | # is-unitary,
and hence .# is reducing for U. Now, 4 is orthogonal onto # 6% and therefore
onto #p; we deduce that .# C #. This argument shows at once that T | #1 is
completely nonunitary and that the decomposition # = # & # is unique with
the properties (i)-(iii).

The preceding result shows that the study of general contractions can be
reduced in many cases to the study of the completely nonunitary ones.

Before proving an important property of isometric and unitary dilations we
study in further detail the space of the minimal isometric dilation of a contraction
T € Z(#). Let us denote by #,, n =0,1,2,..., the subspace of Z, defined
as .
=X oI & -0Dra(0}o- .

n trmes
Thus # = # and each %, is invariant for U}. If we set T, = Py, U, | #7,
then Ty4, is a dilation of T, for every n. The contractions T}, can be viewed
differently. For an arbitrary coptraction S € .Z°(#) we can construct a dilation
S~ of S on # & Zs defined by

(1.8) S.(z®y) =Sz® Dsxz.

Clearly then S. is a partial isometry and
Ds._ =kerS. = {0} & s.

Thus if we repeat this procedure, we can construct a partial isometry S.. =
(S~)~ which dilates S~, acts on # & s & Ds, and is defined by

S (zPy®2z)=Sz®DszDy.

It is clear now that the contractions T}, considered above satisfy the relations
Tot1 = (Tn)~, n=0,1,2,...,

up to natural unitary equivalences.

1.9. PROPOSITION. Let T € L(#) and T' € & (#"’) be two contractions,
and let X € L (¥, ') satisfy the intertwining relation T'X = XT. Then there
ezists an operator Y € L (¥ & D¢, X' & Dr+) such that :

(i) Y({0}®2r) C {0} ® Dr/;
(ii) Pp'Y | # =X;
i) (Y]l = |IX|; and |
(iv) TL.Y = YT., where T~ and T., are the dilations of T and T’ described
by (1.8).
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PROOF. We may assume without loss of generality that ||X|| = 1. Indeed. if
X =0 we take Y = 0 and if X # 0 we can replace X by X/||X]||. In order to
satisfy (i) and (ii), Y must have the form
Y(izoy) =Xza (Z(zdy)), I1®yeX oD,
where Z € Z(# ® 271,21 '). The condition that ||Y]| < 1 is easily seen to be
equivalent to :
1Z(z@II* < [zl ~ || Xz]]* + |ly]* = |IDxz @ y|?
and therefore there must exist C € . (# & Zr, %), ||C}| < 1, such that
Z=C(Dxel).

Finally, condition (iv) is easily translated into Z(Tz® DrX) = D1 Xz, 2z € #.

Thus, in order to finish the proof, it suffices to prove the existence of a contraction

C € Z(# & Zr,Zr ) such that '
C(DxTz & Drz) = Dr Xz, ze€#

Since C can be defined to be zero on the orthocomplement of the linear manifold
{DxTz & Drzx :z € #}, we only have to prove that

IDxTz @ Dral| > IDr Xzl 3 €,
or, equivalently,
Tzl = X Tzl + ll=l? = | T=l* 2 || X<||® - 17" Xz]|?,
and this inequality follows from the commutation relation 7'X = XT and the
fact that |[X]|[ = 1. The proposition follows.

We can now prove the following general lifting theorem.

1.10. THEOREM. Let T € F(#), T' € L (#') be two contractions and
UeZX), U € F(X') be unitary or minimal isometric dilations of T and
T, respectively. Then for every X € L(# ,Z') satisfying T'X = XT, there
exists Y € L(H, H') such that U'Y = YU, ||Y|| = |IX|l, X = PgY | #,

YZ, CZL, and
Y(Z,oF)CH . eX,

where o -
K=\ U#, L=\ Uux.
n=0 n=0

PROOF. We consider first the case when U = U} € Z(F,) [resp. U’ =
U, € Z(%])] is the minimal isometric dilation of T [resp. T"]. Denote by
Ty [resp. T.], n > 0, the compression of Uy [resp. Ty] to # = V7 UL
[resp. #, = V?:o U’ #'), and observe that by Proposition 1.9 (and the remarks
preceding it) we can find bounded operators Y, € & (#y,#,) such that ¥p =
X, PeYoyy | #p = Yo, Yari(Frn1 © ) C #lyy 04, ||[Yall = X, and
TiYn = Y, T, for n > 0. It obviously follows that there exists an operator
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Y, € L (H;, Z]) such that ||[Yi]|| = ||X]|, Yo (Zr 6 &) C Z ©#', and
Py Y Hp = Yo, n 2 0 (set, e.g., Yo7 = limp0 Yo Py, 7, 2 € 7, ). Since we
also have U,z = limp oo Tn Py, 7, T € Z,, it follows that U Y, = Y, U, and
the theorem follows in this case.

Assume now that U [resp. U’] is a minimal unitary dilation of T [resp. T"].
Then Uy = U | Z; [resp. U, = U’ | Z/] is a minimal isometric dilation of
T [resp. T"] so, by what has just been proved, there exists Y, € Z(%,, %)
such that UL Y, =Y, Uy, |[Y4|] = |IX]|, P Yy | # = X, and Y, (Z, 6 7)) C
F]o#'. Then U* [resp. U'*] is a minimal isometric dilation of U [resp. U]
and U3Y}! = YU . By the first part of the proof (applied to Y ) there exists
an operator Y € (%, %) such that ||Y|| = ||Y, ||, Y*(Z'©Z)) c ' 6%,
and Py, Y* | Z! = Y}. It follows then that Y, =Y | Z, and Y satisfies all
the conditions of the theorem.

Finally, if U and U’ are arbitrary unitary dilations, then we can obviously
write U = Up®U, [resp. U’ = Uy @Uj] where Uy [resp. Up) is a minimal unitary
dilation of T [resp. T”] acting on %, [resp. Zg]. If Yo € £ (F, Ay ) is such that
1Yoll = IXIl, UpYo = YoUo, PeYo | # =z, and Yo(F, © &) C FL 6,
then Y = Yo ® Oy gy, will satisfy the conditions of the theorem. The proof is
now complete.

A consequence of the preceding result is the following commutant lifting the-
orem, whose proof is left as an exercise.

1.11. THEOREM. Let T € Z(#) be a contraction and U € Z(#) a
unitary or isometric dilation of T. For every X € {T}' there exists Y € {UY}
such that

Y, C %, Y(Z,oX)CH X,

and PyY | # = X, where ¥y = |2 UZ .
This commutant lifting theorem gives a very useful description of {T'}’, espe-
cially so when {U} is easy to describe.

Exercises

1. Let S be a multiplicative semigroup of operators on £ and assume that
# C F is a subspace with the property that the mapping A — Py A | Z
is multiplicative on S. Show that # is semi-invariant for S, i.e:, there exist
subspaces # and .#", invariant under every operator in S, such that .# > ./
and # =4 04

2. Complete the proof of Lemma 1.3.

3. Let U € Z(¥) be a minimal unitary dilation of T € (&) and set
Uy = U | i, where Fy = /oo U"# . Show that U is a minimal isometric
dilation of U}.

4. Let V € Z(#) be an isometry. Show directly that the minimal isometric
dilation of V* is a unitary operator.
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5. Let T € Z(#) be a contraction and let .# be a subspace of # such that
P4T | # is a unitary operator. Prove that .# is a reducing subspace for T.

6. Let T € Z(#) be a contraction. Show that the matrix U = [_ gr‘ T}
defines a unitary operator on # & #. Is U is a unitary dilation of T?

7. Under what conditions is the operator Y in Proposition 1.9 uniquely deter-
mined?

8. Describe all operators Y satisfying conditions (i), (ii), and (iv) of Proposition
1.9.

9. Prove that if X is unitary in Proposition 1.9, then Y is uniquely determined
and unitary.

10. Prove that if X is an isometry in Propo.éition 1.9. then Y can be chosen to
be an isometry. Is Y necessarily unique?

11. Is Theorem 1.10 true if U and U are only assumed to be isometric dilations
of T and T", respectively?

12. Prove Theorem 1.11.

13. Let T. T' € Z(#) be two commuting contractions (T'T’ = T'T). Prove
that there exists a Hilbert space Z O # and commuting unitary operators U,
U € (X)) such that U and U’ are unitary dilations of 7 and T”, respectively.

14. If X in Theorem 1.11 belongs to the double commutant {T}”, can Y always
be chosen in {{7}'?

2. Isometries and unitary operators. The results of the preceding para-
graph show the importance of understanding the structure and relative position
of the invariant subspaces of an isometry. Let us first recall that an isometry
V € Z(#) is a unilateral shift if there is a closed subspace F C # (called a
wandering space) such that the spaces {V"¥ }32 , are mutually orthogonal and

o0
7=@pv's.
n=0
The dimension of the Hilbert space .# is called the multiplicity of V. Clearly a
unilateral shift is a completely nonunitary operator; indeed Moo, V"% = {0}.
The following result of Wold and von Neumann shows that the converse is also
true.

2.1. THEOREM. LetV be an isometry on the Hilbert space # . Then there
erists a unique reducing subspace # for V such that

) V| # i3 a unilateral shift; and.
(ii) V | # © # is a unitary operator.
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PROOF. The sequence of subspaces {V"#}32, is obviously decreasing so
that we have

[o o] (o o]
(2.2) ¥ = (@(v";? ) v"“;?')) ) (ﬂ vw’) ;

n=0 n=0
weset # = D (V" oV =@, V"F ,F =XoVH. ThusF
is a wandering subspace and V | /) is a shift. Relation (2.2) shows that 4 is
reducing and

o0
H o= ﬂ Vr#.
n=0
Thus V(# 0#) = o, V*# = Nowo V*# = # ©# and # has properties
(i) and (ii) of the statement. Now V' | #; is completely nonunitary so that the
uniqueness of #; follows from Proposition 1.7.

2.3. REMARK. The projection onto V"# is given by V"V*" and therefore the
projection Pggy, equals the strong limit of the decreasing sequence {vry+" .
n > 0}.

2.4. COROLLARY. An isometryV € Z(#) is a unilateral shift if and only
if liMp—oo [[V*"2)| =0 for allz € #.

PROOF. Assume V is a shift so that

r=-@vs, Fcx

n=0

Then V*""'z = 0 for z € V*F . Since the sequence {V*"}3%, is bounded in
norm and the spaces {V*F }32, span #, it follows that limp_.oo [[V*"z|| =0
for every z € #. Conversely, if V is not a shift and # is as in Theorem 2.1,
then ||V*"z|| = ||z|| for every z € # © #. The corollary follows.

2.5. DEFINITION. Let T € .Z(#) be a contraction and U, € £ (%) be
the minimal isometric dilation of T. Set % = %} © U+ %y,

o0
A=PUiL, 'A=FH ok, R=U.|ZX
n=0
The space % is called the residual part of %} and the unitary operator R is
called the restdual part of U,

There is one important particular case in which the residual part of %, is
'absent; the part .4 is absent only when T is a unitary operator, as we shall see
shortly.

2.6. DEFINITION. A contraction T € £ () is said to be of class C.g if
limy—o0 ||T*" z|| = 0 for all z € #; T is of class Cy. if T* is of class C.q. Finally,
T is of class Cyg if it is both of class C.g and of class Co..
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2.7. PROPOSITION. Let T € L () be a contraction with minimal isomet-
ric dilation U, € 2 (F.). Then the residual part of Zy is {0} if and only +of T
19 of class C.g.

PROOF. Assume first that T is of class C.g, z € #, and k is a natural

number. If n > k£ we have

n ek n—k
U Ukz=07 z2=T" 'z

and consequently
lim U Ukz|| = 0.
11— 00
Since the family of vectors {Ufz : z € #, k > 0} spans 7., we conclude
that U’} is of class C.y and hence it is a unilateral shift by Corollary 2.4. Thus
# = {0} by the von Neumann-Wold decomposition theorem.
Conversely. we note that for z € # we have by Remark 2.3

) 2T = 1 npr*t = |i npst
(2.8) Pyx nll’n;oU+U+x nangoU+T z

so that ||Ppz|| = limp_.o0 |T*" z||. If # = {0} it obviously follows that T is of
class Clq. .

2.9. PROPOSITION. With the notation of Definition 2.5, the spaces Z. and
D+ have the same dimension. If U, 1is the dilation constructed in the proof of
Theorem 1.4, then an isometry ¢. of Pr- onto L is given by

¢u{z) =Dr-z2® (-T"2) 90008 - -- .

PROOF. We have .% = kerU}. Assume U, is constructed as in Theorem

1.4. Then every element u in 4 can bc written as

with y € #, d,, € D1, and Y oo, |ldn]|?> < co. Then we have

w .
Uju=(T"y+ Drdo) ® (@ dn+l)
n=0
so that U} u = 0 if and only if
(2.10) T*y+ Drdy =0
and d, = 0 for n > 1. Upon multiplication by T', (2.10) becomes
TT*y+TDrdg =0
or
y — D3.y+ Dr-Tdy =0,
where we have used (1.1} and (1.2). Thus we have y = Dr-x with 2 = Dr-y —
Tdg. Note that z € Dy since Ty C Dr-. Then multiplication of (2.10) by
Dr easily yields
T'Dr.y +dog—T'Tdyg =0
or, equivalently, dg = —T*z. These calculations show that the map ¢. is onto
Z.. That ¢, is an isometry is easy to verify, thus concluding the proof.



