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PREFACE

The scattering of electromagnetic waves by a homogeneous sphere
is a problem with a known solution. I first met this problem when I
needed some numbers and curves in an astrophysical investigation.
I coon learned that it is a long way from the formulae containing the
solution to reliable numbers and curves. Subsequent conversations
and correspondence with other research workers, notably in chemistry,
showed that the same difficulty was felt in other fields.

The studies on which the present book is based were started in 1945
in an attempt to compile the data available in the literature and to
fill in the gaps, where needed. Several related problems, such as the
scattering by cylinders, were added to the original topic.

For clearer presentation, the problems of mathematical physics
dealing with the scattering properties of single particles (part II) have
been separated from the problems arising in specific fields of applica-
tion (part IIT). The properties of the particles that should be known
in order to deseribe the optical properties of a medium consisting of
such particles have been defined in general terms (part 1).

New formulae or numerical results are contained in almost all chap-
ters. They are noted in the references at the end of each chapter. The
reference lists have steadily grown in the course of the years; they
probably are fairly complete, but no systematic bibliographical study
has been made.

Although the bhook has a mathematical character, requirements of
mathematical rigor do not dominate the presentation. Arguments
based on physical intuition are given wherever they illuminate the
subject more clearly than a mathematical derivation. Simple results
that arise under special sets of assumptions are often derived both
ways. In view of the wishes expressed by several colleagues, I have
not shrunk from a certain inconsistency in the level of presentation.
For mstance, chapter 17, which comes closest to an actual research
report, contains less explanation of elementary detail than some earlier
chapters, which may be consulted by research workers without special
mathematical training.

Personal acknowledgment of the support received from numerous
friends and colleagues in writing this book is impossible. T wish to
express my thanks both for the infermation they have contributed
and for their inspiring questions.

H. C. vax pE HuLsT
Leiden, The Netherlands
March, 1957
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PART 1

Basic Scattering Theory






1. INTRODUCTION

1.1. Scattering, Absorption, Extinction

This book is a treatise on the scattering of light. Hardly ever is light
observed directly from its source. Most of the light we see reaches
our eyes in an indirect way. Looking at a tree, or a house, we see
diffusely reflected sunlight. Looking at a cloud, or at the sky, we see
scattered sunlight. Jven an electric lamp does not send us light directly
from the luminous filament but usually shows only the light that has
been scattered by a bulb of ground glass. Everyone engaged in the study
of light or its industrial applications meets the problem of scattering.

Scattering is often accompanied by absorption. A leaf of a tree looks
green because it scatters green light more effectively than red light.
The red light incident on the leaf is absorbed; this means that its energy
is converted into some other form (what form of energy is irrelevant for
our purpose) and is no longer present as red light. Absorption is pre-
ponderant in materials such as coal and black smoke; it is nearly absent
(at visual wavelengths) in clouds.

Both scattering and absorption remove energy from a beam of light
traversing the medium: the beam is attenuated. This attenuation, which
is called extinction, is seen when we look directly at the light source. The
sun, for instance, is fainter and redder at sunset than at noon. This
indicates an extinction in the long air path, which is strong in all colors
but even stronger in blue light than in red light. Whether scattering
or absorption is mainly responsible for this extinction cannot be judged
from this observation alone. Looking sideways at the air, through which
the sun shines, we see that actually blue light is scattered more strongly.
Measurements show that all light taken away from the original beam
reappears as scattered light. Therefore, scattering, and not absorption,
causes the extinction in this example.

Other terminology is sometimes used but is not recommended. Here
the word absorption is used in the sense of extinction as defined above.!
Actual absorption is then designated as ‘“‘pure absorption” or “true
absorption.” Throughout this book terms will be used as defined above,
so that

Extinction = scattering 4 absorption.

! E.g., in the term “‘interstellar absorption.”

3



4 BASIC SCATTERING THEORY

1.2. Subject Limitations

Only a few of the multitude of scattering phenomena are treated
in this book.

A first restriction is that we shall always assume that the scattered
light has the same frequency (i.c., the same wavelength) as the incident
light?. Effects like the Raman effect, or generally any quantum tran-
sitions, are excluded.

1.21 Independent Scattering

A second, most important limitation is that independent particles
are considered. The distinction is roughly this: the scattering by well-
defined separate particles, such as occur in a fog, is within the province
of this book, whereas the scattering by a diffuse medium, as for instance
a solution of a high polymer, is not discussed.

A more precise distinction may be made. If light traverses a perfectly
homogeneous medium, it is not scattered. Only inhomogeneities cause
scattering. Now, in fact, any material medium has inhomogeneities as
it consists of molecules, each of which acts as a scattering center, but it
depends on the arrangement of these molecules whether the scattering
will be very effective. In a perfect crystal at zero absolute temperature
the molecules are arranged in a very regular way, and the waves scattered
by each molecule interfere in such a way as to cause no scattering at all
but just a change in the overall velocity of propagation. In a gas, or
fluid, on the other hand, statistical fluctuations in the arrangement
of the molecules cause a real scattering, which sometimes may be
appreciable. In these examples, whether or not the molecules are arranged
in a regular way, the final result is a cooperative effect of all molecules.
The scattering theory then has to investigate in detail the phase relations
between the waves scattered by neighboring molecules. Any such
problem, in which the major difficulty is in the precise description of the
cooperation between the particles, is called a problem of dependent
scattering and is not treated in this book.3

Frequently, however, the inhomogeneities are alien bodies immersed
in the medium. Obvious examples are water drops and dust grains in
atmospheric air and bubbles in water or in opal glass. If such particles
are sufficiently far trom each other, it is possible to study the scattering

2 This may technically be called coherent scattering. However, this term is
often used with a different connotation: an assembly of particles is said to scatter
incoherently if the positions of the individual particles vary sufficiently (sec. 1.21).

% See the references at the end of this chapter. References appear throughout at
the end of each chapter.



INTRODUCTION 5

by one particle without reference to the other ones. This will be called
independent scattering; it is the exclusive subject of this book.

It may be noted that waves scattered by different particles from the
same incident beam in the same direction still have a certain phase
relation and may still interfere. The fact that the wavelength remains
the same means that the scattered waves must be either in phase and
enhance each other or out of phase and destroy each other, or any inter-
mediate possibility. The assumption of independent scattering implies
that there is no systematic relation between these phases. A slight
displacement of one particle or a small change in the scattering angle
may change the phase differences entirely. The net effect is that for all
practical purposes the intensities scattered by the various particles must be
added without regard to phase. It thus seems that the scattering by
different particles is incoherent. although in the strict sense this is not
true. An exception must be made for virtually zero scattering angles. In
these directions no scattering in the ordinary sense can be observed.
(See chap. 4.)

What distance between particles is sufficiently large to ensure inde-
pendent scattering? Early estimates have shown that a mutual distance
of 3 times the radius is a sufficient condition for independence. This may
not be a general rule, but a more precise discussion is beyond the scope of
this book. Inmost practical problems the particles are separated by much
larger distances. Even a very dense fog consisting of droplets 1 mm in
diameter and through which light can penetrate only 10 meters has about
1 droplet in 1 cm3, which means that the mutual distances are some 20
times the radii of the drops. The same is true for many colloidal solutions.

1.22. Single Scattering

A third limitation is that the effects of multiple scattering will be
neglected. Practical experiments most often employ a multitude of
similar particles in a cloud or a solution. The obvious relations for a thin
and tenuous cloud containing M scattering particles are that the intensity
scattered by the cloud is M times that scattered by a single particle, and
the energy removed from the original beam (extinction) is also M times
that removed by a single particle. This simple proportionality to the
number of particles holds only if the radiation to which each particle is
exposed is essentially the light of the original beam.

Each particle is also exposed to light seattered by the other particles,
whereas the light of the original beam may have suffered extinction by
the other particles. If these effects are strong, we speak of multiple
scaftering and a simple proportionality does not exist. This situation
may be illustrated by a white cloud in the sky. Such a cloud is like a
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dense fog; its droplets may he considered as independent scatterers.
Yet the total intensity scattered by the cloud is not proportional to the
number of droplets contained in it, for not each droplet is illuminated by
full sunlight. Drops within the cloud may receive no direct sunlight at
all but only diffuse light which has been scattered by other drops.  Most
of the light that emerges from a cloud has been scatttered by twao or more
droplets successively. It is estimated (for a very thick cloud) that about
10 per cent emerges after a single scattering.

Multiple scattering does not involve new physical problems, for the
assumption of independence, which states that each droplet may be
thought to be in free space, exposed to light from a distant source, holds
true whether this source is the sun or another droplet. Yet the problem
of finding the intensities inside and outside the cloud is an extremely
difficult mathematical problem. This problem has been studied exten-
sively in many ramifications. It is usually called the problem of radiative
transfer. Common applications are the transfer of radiation in a stellar
atmosphere and the scattering of neutrons in an atomic pile. The cases
treated so far refer to rather simple forms both of the single scattering
pattern (isotropic scattering, Rayleigh scattering) and of the entire cloud
(infinite or finite slab with plane boundaries, sphere). The reader is
referred to the literature for further details.

A simple and conclusive test for the absence of multiple scattering is
to double the concentrations of particles in the investigated sample.
If the scattered intensity is doubled, only single scattering is important.
Another eriterion may be the extinction. The intensity of a beam passing
through the sample is reduced by extinetion to e~" of its original value.
Here 7 is the optical depth of the sample along this line. If 7 < 0.1
single scattering prevails; for 0.1 < 7 < 0.3 a correction for double
scattering may be necessary. For still larger values of the optical depth
the full complexities of multiple scattering become a factor. They may
not prevent a determination of the scattering properties of a single particle,
but they certainly make the interpretation much less clear. Caution is
invariably required when the optical depth is not small in all directions
through the sample.

Concluding this section it may be noted that this book treats only the
very simplest case occurring in the theory of many particles. This leaves
room for a thorough treatment of the scattering theory for one particle.

1.3. Historical Review

A proper understanding of the subject will be helped greatly by a
review of its history, even though this has to be brief and can only show
some of the highlights.



