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Transistor Applications



Preface

In the more than ten years since the advent of the junction
transistor, many books have been published on practically every
aspect of transistor theory and applications. The wisdom of
publishing still another book on such an already well-covered sub-
ject may, therefore, logically be questioned. The answer to this
question has to be that another book on the subject, to be a
worthwhile contribution to the art, must either present new
information, or available information in a new way or for a new
purpose. This, I submit, is the object of this book. It is not a
textbook—most of the theoretical derivations have been deliber-
ately omitted for the sake of conciseness. It is not a handbook—
detailed treatments of all the aspects of the subject could not
possibly be included in this amount of space. It is, in essence,
a concise treatment of the subject, designed specifically for the
industrial engineer who wishes to understand the basic theory of
transistor applications, yet has neither the time nor the inclina-
tion to become expert in the field. It will not, therefore, gener-
ally enable the reader to design immediately transistor circuits,
although there is considerable design detail included. It will,
I trust, enable him to analyze transistor circuits, and thus learn
how they work. With this beginning, and with a reasonable
amount of supplementary study, the engineer-reader will then be
ready to assume the burden of design.

Although not specifically designed as a textbook, this volume
can still prove valuable as a supplemental text. I have had the
privilege of teaching an industrial transistor course for many
years, using as a text Transistor Circuit Engineering. In the
course of this teaching I found it valuable to develop a set of
supplemental notes to help emphasize certain aspects of the sub-
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vi PREFACE

ject that were particularly difficult to understand, or, in some
cases, to up-date the material or add new angles to the presenta-
tion. These notes formed the basis of the material in this book.
Thus, this book can provide considerable practical “meat” to
the skeleton formed by the usual theoretical textbook.

Additionally, the book has many qualities which can be of
considerable value to the engineer who is already conversant with
the basic transistor theory. For example, most textbooks, and
many handbooks as well, are deficient from the standpoint of
ease of utilization. Transistor specifications today almost uni-
versally employ a standard symbology and give their values in
specific forms, yet all too often the designer working from avail-
able texts must convert these published values to some other
form which happened to be more attractive to the author. As
one aim, therefore, I determined, as far as practicable, to evolve
all equations in such form that the reader could insert available
specifications directly, without the necessity of conversion.

There are obvious deficiencies in an approach such as this, as
well as advantages. The subject coverage is as extensive as is
warranted for the avowed purpose, to give the reader under-
standing, not expertness. In many portions of the book, this
means, however, that only typical designs can be included. As
an example, the subject of transistor logic can easily be, and has
been, expanded to encompass whole volumes. To compress such
a subject within the relatively few pages alloted to it here there-
fore presents quite a challenge. I sincerely believe that I have
managed to supply the necessary tools to understand the elements
of this subject, and of the other phases of transistor technology
included. Of course, having boiled the ‘fat” off the subject, as
it were, the essential information left behind becomes easier to
find! On this hopeful note I will end this preface.

RicHARD F. SHEA
October 1963

Schenectady, N.Y.
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Two-Port Networks

1.1 Introduction

A complicated electronic circuit may be broken up into a number of
smaller circuits, or networks, connected in series, parallel, combinations
of series and parallel, and cascade. These networks may contain
active elements, such as transistors, passive elements, such as resistors
or capacitors, or combinations of active and passive elements. Net-
works containing only passive elements are called passive networks,
whereas those containing active elements are called active networks,
though they may also contain passive elements.

A network has a number of “ports’’ to which external connections are
made. A two-port network has an input port, to which a source is con-
nected, and an output port, to which a load is usually connected,
although occasionally the output may connect to a load containing an
actlve element, such as a voltage SQIGRe. 1N transistor circuits the input

e or a preceding stage, and
the output port supplies girfaXto = : Ry succeeding stage.

Figure 1.1 illustrates th oxly@ntg 8 3 ixsua
input and output curren -' that the positive direc-
tion for current is flowing Sejo the netwod€ If the ourrent actually
flows out of the network, it is gfewemflegative sign. This convention

must be borne in mind when dealing with transistor circuits, since the
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2 TRANSISTOR APPLICATIONS

I
Two-port

Network Ve

Fig. 1.1 Network voltage and current conventions.

L

direction of current will depend upon the type of transistor as well as on
the circuit details, and we will be frequently encountering negative
currents.

It will also be noted that no external connections are shown. This is
one of the distinguishing features of network theory, in that it allows us
to analyze the network without regard to external connections, then take
these into effect subsequently by combining the termination representa-
tions with the formulations representing the network.

We can express the relations between the input and output currents
and voltages in a number of ways. For example, we can use the imped-
ance parameters and express the network behavior as follows:

Vi = enl1 + 21202 (1.1
Vi = 29101 + 29902 1.2)

The meaning of the above z parameters may be obtained by assuming
that the input or output terminals are respectively open-circuited.
Thus, if the output terminal is open I'2 becomes zero, and eqs. 1.1 and 1.2
reduce to V; =z;,Iy and Vg = z51]; respectively. Therefore the
parameter z;; is evidently the ratio V1/I, or input impedance, with the
output open-circuited. Likewise, the parameter zg; is V2/I1, or the
open-circuited output voltage produced by an input current, divided by
that input current. This is called the forward transfer impedance. In
gimilar manner, by assuming that the input terminals are open, we can
obtain equations defining the other two z parameters:

]

il

V1‘ = 212[2 and Vz = 22212

Therefore, 213 is a backward transfer impedance with the input open-
circuited and zy3 is the output impedance with the input open. Thus
we have defined the four z parameters in terms of input and output
impedances and transfer impedances with either the input or the output
port open.
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1.3 Matrix Representation of Network Equations

A matrix equation ig, in effect, a shorthand representation of the rela-
tionships given in egs. 1.1 and 1.2. It is written in the following form:

[Vl] - I:Zu 312] [11]
V2 251 293} | I2 (1.3)

Each of the three sections of eq. 1.3 contained in brackets is a matrix;
thus this equation states that the voltage matrix is the product of an
impedance matrix and a current matrix. Equation 1.3 can be further
simplified to the form:

(V] = 12l (1.4)

where each bracketed symbol represents a voltage, impedance, or current
matrix as given in eq. 1.3.

Another commonly used set of parameters consists of the admittance
parameters. The relationships between inputs and outputs may be
shown in the following form:

Iy = yuVi+ y2Ve (1.5)
Iy =y Vi+ yaeVe (1.8)

Following the method used for the z parameters, we can obtain meanings
for the above y parameters, only now we must short-circuit the input or
output terminals to eliminate the V) or V3 terms, as desired. In this
manner we find that: '

y11 = input admittance with the output short-circuited;

¥12 = backward transfer admittance with input short-circuited;
ya1 = forward transfer admittance with output short-circuited;
ys2 = output admittance with input short-circuited.

A third set of parameters, used most extensively in transistor circuit
analysis, combines impedance, admittance, and ratios. These are the
h parameters, and the current-voltage relationships are:

Vi = huli+ h2Ve 1.7)
Iy = hoyl1 + haaVe (1.8)

As before, we define these parameters, only now some are defined for
short-circuited termination and some for open-circuited termination.
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h11 = input impedance with output short-circuited;
h12 = backward voltage transfer ratio with input open-circuited;
ha1 = forward current transfer ratio with output short-circuited;
ho2 = output admittance with input open-circuited.

A fourth set of parameters also occasionally used in transistor circuit
analysis consists of the g parameters, which are expressed as follows:

Iy = guVi+ g2l (1.9)
Vo= gaVi+ gaals (1.10)

These parameters have the following meanings:

g1 = input admittance with output open-circuited;
g12 = backward current transfer ratio with input short-circuited;
g21 = forward voltage transfer ratio with output open-circuited;
g22 = output impedance with input short-circuited.

Finally, there are two other arrangements possible and these use the
a and b parameters respectively. The matrix expressions are:

Vil _lon a2V ] (.11)
I a1 a2 j| —12
V2 — bll b12 Vl ] (1 12)
[12] [b2l baa ]| — 1 )
Note the negative signs preceding the current terms in the third matrix
of both equations.
Although these parameters can be defined in similar manner to the
other parameters, these definitions can be anomalous, and it is more con-

venient to define them by relationship to the other, more easily defined,
parameters. Thus:

1 1 1 1
a1 = — ayg = =~ — ag1 = — Qg = — —
_ g21 y21 291 haa
and (1.13)
1 1 1 1
biy=-— bpg=~—-— bu=— bar=——
b1z Y12 212 g12

The above definitions frequently permit calculation of these param-
eters by inspection. Consider, for example, the simple resistive network



