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Preface

This book, arranged as a series of interreiated topics in A to Z oxder, is intended
i0 be'used as 2 basic reference manual for anyone wishing to understand the
complexities of microprocessors and microprocessor-based systems. My aim has
been to put in the.sort of information, in as concise a form as possible, that is
required particularly by personnel and students working in the service and test
areas of the microelectronic and allied industries. More advanced data—what
might be called “state of the art” material~has been deliberately left out. Thus .
the central core of the book is the section giving operating details on the
industry-standard 8-bit processors. For students, whether technician or under-
graduate, the book can variously provide easily-accessible learning material and a
ready reference with design and project work. '

G. L. 1986
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Absolute Address

Absolute Addressing
Mode

Access Time

Accumulator

An aadress fuat s permanently assigned io a particular storage location. This
assigning will be done at the design siage of the machine. Also called specific
address, machine address, actual addyress, and real address.

Another way of looking at this is to say that an absolute address is a pattern of
bits on the address'bus (ir machine code) that identifies, without any further
modification, a enique <terage Location.
© ADDRESS @ ADDRESS DECODING @ MEMORY MAFP

An addressing mode where the op-code is followed by a 2-byte address (for 8-bit
micros); in other words, the operand of the instructicn will be an absoiuie
address.

Example
STX $31A8 Store content of > reg. at address $21AN

This mode of addressing i usually called direet or extended in most processors.
An exception is the 6502 which dues have an absofuie addressing mode. Note that
with this processor the second bute of the operanc in machine code provides the
mast significant haif of the address. In the example given above, using the 6502,
the instruction would read:
STX  831A9 {Machine code = 8E Af31)

In machine code, the iow byte of the address is specified first. .
® ADDRESSING MODE @ MICROPROCLSSOR [6502)

The word *“access” is used as a verb in microelectronics to describe the operation
of obtaining data from unv memery locaiion, either RAM or ROM. or from a
peripheral; a wypical statement is

“The data at memory address XXXX wus accessed™

The access fime tefers 1w the speed with whech the content of any Jocation within a

memory ~an be made available. It is the time interval betwesn the instant that an
address is sent to the memory and the instant that the data stored at that memory
address is presented at tie output.

Random access, where any location in the store can be reached in the same
time as any other, is the fastest method. Both RAM and ROM chips are random
access devices. Backing stores, such as magnetic disk, drum and tape. use
accessing methods which are cyclic (¢isk, drum) or serial (tape). The access time.
then, vanes for different store locations, and an average time for access is then
quoted; this would be the time for vne half revolution in a cyclic system

Access times for semiconductor i.c. memory chips are typically:

NMOS ROM 450 nsec

NMOS siatic RAM 309 nsec

-CMOS stauc RAM 200 nsec

@ MACHINE CYCLE @ M%'MORIES

There will be at least one, but usually two or more accumulators within a
microprocessor unit, An accumulator, often referred to as simply a register, acts
as a temporary storage location inside the processor and is very important for
arithmetic, iogic and data manipulation ope;ations. The accumulator will hold the
result of arithmetic and logic operaiions carried out by the ALU.

Example
ADD A 81698 Add the content of address 31000 to Accumulator A

The result of the addition will then be held in accumulatar A.
The mavem:=3t of daty within. a microcomputer system to or from memory
location: and the microprocessor will probably use an accumulator.

8950004



_ACIA

¥

Active State

Adder

Example

LDA 83200  Load Accumulator from memory location $320¢
or

STA 80F20  Store content of Acc at address 36F20

Apart from these examples, other instructions that will operate on the
accumulator include:

INCREMENT DECREMENT - AND OR EXCLUSIVE-OR

TRANSFER (between accumulators) ROTATE SHIFT
COMPLEMENT

® MICROPROCESSOR @ REGISTER

Abbreviation for @ Asynchronous Communications Interface Adaptor.

This refers to the logic level or a logic change of state (called transition) on an
input pin to a microprocessor or other microelectronic chip, which activates, or
triggers on, a required tunction.
There are four possible conditions:
ACTIVE LOW A logic B stale initiates action. This is usually indicated by a
bar over the function, i.e. RESET.
ACTIVE HIGH A logic 1 state initiates action.
ACTIVE TRANSITION Low to High: the positive-going edge triggers the
required function.
ACTIVE TRANSITION High to Low: the negative-going édge triggers the
required function.
©® ENABLE @ INTERRUPT

A microprocessor has to have circuits to perform the arithmetic operations of
addition, subtraction, multiplication and division. An adder, a circuit that adds
digital signals, is therefore an essential part of the Al U (fig. A1)

" In computing, the basic arithmetic vpecation is addition s..ce subtraction can
be performed by taking the twos-cumpt.-wcat of the number to be subtracted and
then adding it to the other number. Similarly, multiplication and division are
carried out by shifting and adding.

The half-adder is the basic circuit. It adds two bits together and produces a sum
and carry. A full adder is an extension of this circuit so that a carry bit from a
previous addition can also be considered.

For an adder the inputs are

Addend An
Augend Bn ‘ p
Carry  Cp-1 (from next lower bit)

and the outputs are

Sum $n
Output carry Cn

Full adders are linked together as shown to make a parallel adder (4 bits in

diagram). Note that addition can be carried out serially but this is obviously a
much slower process.

® ARITHMETIC AND LOGIC UNIT (ALU)



Fig. A1 Adders

ADD instruction

{Addend) A HALF- Sum
(Augend! 8 ADDER Carry

. A'—:) S$=AF+8A
B

tnputs

- 8 Ba8sn”

Hatf-adder circuit

Full adder circuit

Example

Addend (4) 1811
Augend {8) 14@1
Result (S) 7011
Carry (CJ) 1

These form part of the arithmetic instruction set for. a microprocessor. They are

ADD Add without carry (memory to accumulator)

ADC Add with carry (memory to accumulator)

ABA Add accumulators.

The carry bit will be a flag within the status (condition code) register. The C
flag will normally be set if there is a carry from the most significant bit of the
result; it will be cleared otherwise. (See fig. A2.)

For most arithmetic operations, ADD WITH CARRY is the instruction that
should be used.

Typical add instructions for some microprocessors are:

OPERATION SYMBOLIC NOTATION MNEMONIC
6800 6502 280

ADD A+M->AC ADDA ADD (A)
ADDB ADD (HL)

ADD WITH CARRY A+M+C—>AC AoCA  ADC ADC {A)
ADCB ADC (HL)

ADD ACCUMULATORS A+B—A ABA

The full range of addressing modes can usually be used with these instructions.
@ CARRY AND CARRY BIT @ INSTRUCTION



FRg. A2 ADD instfuctions

~
I
ADD A $1 '
cPU I $1920 i
' Previous state - Data
' $1020 -
Accumulnor | S . - 32~
1
Status \ | Dataat i
$1020 added 1
X = don‘t care 1 (withoutoarry) o |
I content of !
| Accumulator H
L, J -~
Memory
- (RAM)
Accumatator 12 ]
Resulting state
Status
register Carry results
C | in this case
' T~but wiil be ignored in any future
ADD instruction
(a} ADD without carry from previous result
e e
1
cPu ADC A 31929
Data
Previous state EE—
Accumutator[_EQ :L | s1920 32
- o ‘
s O ‘/'
register g Data at address |
< | $1020 added with ;
: previous carry to content :
—— 1 of Accumulator i
1 1
-
o

{RAM)}

Aocumuli(ovl 13

register <

{b) ADD with carry

]Resuning state

. Carry results
" which wit be used
if the next instruction is ADC

A binary coded number or word that is used to specify a location within memory
or input/output ports.

A unique location has to be provided for all the data and each of the
instructions used in a program. These memory locations, which are in ROM,
RAM and 1/0, are each identified by an address which is simply the pattern of
binary bits sent out by the microprocessor over the address bus. An 8-bit
microprocessor will have 16 address lines (Ag to A,;) so that it can address 2'°
possible locations, with each location containing one byte of information.

2'* = 65 536, which is normally referred to as 64 K.

As an example, consider the simple arrangement of a 256 X 4-bit semiconductor
RAM chip. The 256 store has 16 x 16 locations arranged as 16 rows and 16
columns; this is shown in block form in fig. A3. To access any location within this
RAM chip, an 8-bit binary coded address can be used, 4 lines for X and 4 for Y.
For example if the address is

X=0110 (=6,)
Y=1016 (=10,)

then only the memory location (holding 4 bits of data in this case) at X, and Y,
will be addressed. Note that X = 0808 and Y = @808 is the first location at row
zero and column zero. ,

In a practical system, the memory i.c.s have chip select or chip enable signals
which are decoded from the upper address line signals. In this way, memory i.c.s
can be allocated certain memory areas without overwrite.



Fig. A3 i’rinciple of X (MSB)

addressing L 11 e
L 11
Decoder
4 t0 16 lines
lxo 16 lives ]X‘S
o] s
=g Decoder
Y 41016

@§—— lines

(MSB} e

Fig. Ada Address bus

[ DATABUS J CONTROL BUS

1 byte
Most significant
byte

Address ——Ay
bus - -
A Suppose binary pattermn
G on address bus is

1 byte A
——————a, - 18 Ag
Least significant -
T A hyte n 91119089111 18901
— - A, Then address in hex is

—_—_—a, 790

As stated, an address is a binary number and this is what is required by the
machine. In machine code and mnemonic (assembly) language, addresses wili be
specified in hex. For a 16-bit address the range in hex. is from 29684 up to
SFFFF.
® ABSOLUTE ADDRESS @ ADDRESS DECODING ® MEMORY MAP

A bus is a major set of parallel conductors used within a microelectronic system
to minimise the amount of interconnecting. The address bus in a microcomputer
is unidirectional and typically 16 or more bits wide. It conveys address
information from the microprocessor unit to memory as a binary pattern. (Fig.
Ada))

® ADDRESS @ ADDRESS DECCI’’NG @ BUS SYSTEMS



Address Decoding

Each of the individual memory i.c.s used within a system must be allocated

particular memory areas. This is essential to prevent any overlap. Address
decoding, usually of the higher-order address lines, is used for this purpose. An

address decoder is a logic circuit arranged so that for » inputs there are 2° ouiput

lines (fig. A4b,c). Only one of these output lines is high (or low) for each of the

possible binary input combinations. The types used in microprogessor systems are

2-t0-4, 3-t0-8, or 4-t0-16 line. A truth table for a 2-to-4 line decoder where the

inputs are considered to be address lines A, and A, illustrates the principle:

INPUTS OUTPUTS

A Ay, 1 2 3 4
"] "] 1 ] 9 0
0 1 a 1 L) ]
1 0 ("] (] 1 0
1 1 0 0 ] 1
In many systems the decoder output is
the complement of this table. :
Address Lower-order address lines ) Ag -
bus A” e AIJ :
I[ j { L { E Y Ay . 1K
. 8-bit
A __ RAM
;g:: " Memory Memory Memary Memory CS1
address lines chip chip chip chip @ when,/
AL AL, 1 2 3 4 Ay A Ay Ap =P |
cs2
5 = w = A"—D>—J T %
AW l
j L) Add p—— ———— b—v, ‘J >
Lj/‘ deco':: Alz“‘{ » p—Yy Data
308 D—':g
I p——
R [ L This line goes 108
{74138) D__y“s when Ay =1, A, =0, A=l
A g Y,
Fig. A4b Principle of Fig. AA_c Fult address . s vj
decoding for a memory chip

address decoder chip

The memory i.c.s used within the system are provided with one or more chip

select or chip enable lines (CS, CE) and the outputs of the address decoder are
. connected to these enable pins on the various i.c.s as shown.

In some systems where the memory required is small, for example a dedicated
controller, not all the address lines need be decoded, but 'this will result in
overwrite (one memory i.c. occupying a larger area of memory than it actually
requires). In other cases, all address lines must be fully decoded. Take the
example of a 1 K X 8-bit RAM i.c. with two chip select lines. The lower-ordes.-..
address lines Ag to A (2'°= 1024) are used to select a particular location within
the RAM. The binary pattern on these lines is decoded by circuits inside the chip.
The higher-order address lines are decoded fully using a logic circuit for A,,, Aj,
and Ay, while A;, A, and A; give a signal to CS2 via the address decoder. The

- address is then from 82008 to $23FF, and there will be no overwrite.
® ADDRESS ® MEMORY MAP @ PAGE



Addressing Mode

Fig. A5 Addressing modes

Consider the process of loading a register within a microprocessor with data from
a memory location. There are several ways of specifying the location of this data:
it could be at an absolute address, or held in the memory location immediately
following the load instruction, or within an area of memory pointed to by an
index register. The method of specifying the exact location is termed the
addressing mode. In the above example we have, in order: Absolute (or
Extended), Immediate, and Indexed addressing (fig. A5).

The variety or richness of the addressing modes employed by a microprocessor
enhances its processing capability. Microprocessors do not all possess identical
addressing modes and some manufacturers have different names for a particular
mode. The most common are the following:

Addressing modes
Implied (or Inherent)
Immediate

Direct (or Zero Page)
Extended (or Absolute)
Indexed

Relative

Each of these is covered in a separate section and further examples are given
under the section on microprocessors.
® ABSOLUTE ADDRESS @ ABSOLUTE ADDRESSING MODE @ IMMEDIATE

ADDRESSING @ INDEX REGISTER AND INDEXED ADDRESSING
® MICROPROCESSOR

RAM

RAM

ey

@A le— Dpata
LD [=—tnstruction

RAM
—~—

F2 |=—Data here

83 |~e—Offset
LD r |—Iinstruction

{c} LO ¢ @3, X Load register 1 with contents of address given by Xreg. + offset
{Indexed addressing]



Address Register.

Algorithm

Alphanumeric Code

Analog

Fig. A6 Analog signal

Analog-to-Digital
Convertor (ADC)

Sometimes known as Memory Address Register (MAR), this is a register, usuélly
in the central processor, that stores an address.

° ® ADDRESS

A complex task can usually be divided up into several small, easily followed steps.
The set of well-defined steps or processes for the solution of the task is called an
algorithm. In other words, an algorithm describes a way in which a rather
complicated task can be solved, or demonstrates that it cannot be solved.

Take the example of clearing a block of memory that consists of n addresses.
The algorithm for this could be:

1) Load a counter with a number equal to n.

2) Set the index register to point to the ﬁrst address of the block of memory to
be cleared.

3) Clear the address pointed to by the index register.

'4) Increment (add 1) to the index register.

5) Decrement (subtract 1) from the counter.

6) Check to see if the counter has reached zero. If it has not, then return to
repeat 3); otherwise end.

The structure of the program is now defined, which should make the writing of
the program easier.

The word “algorithm” or “algorism” is derived from the surname of the Arab
mathematician *Abu Ja’far Muhammed ibn Musa al-Kuwarizmi (the man of
Kuwarizm).
® FLOWCHART

A set of characters consisting of the numbers 0 to 9 and the letters A to Z.
e ASCII

This describes those types of signal which are of a continuous nature, and not
broken up into discrete steps as are digital signals (fig. A6).

Amplitude

« Time
Most changes in physical conditions, such as temperature, light level, pressure,
and movement, when sensed by an electrical transducer result in analog signals..
The voltage or current varies in a way that is analogous to the change in input
quantity. Similarly, circuits and components that process these 51gnals are also
termed analog or linear type devices.

@ ANALOG-TO-DIGITAL CONVERTOR @ DIGITAL-TO-ANALOG CONVERTOR
® SENSOR

To be acceptable to a microprocessor or other digital logic system, any varying
input signal must first be converted into a suitably coded digital word. This
conversion task is performed by an ADC: a circuit which accepts an analog input
signal, samples it, and then produces at its output a digital word with a weight
that corresponds to the level of the analog input (fig. A7).

Take the example of a 3-bit ADC where the digital output can have a
coded value from 698 up to 111. This means that the analog input is split up or



Stan Waveforms
conversion
command v ?
Conversion complete
e :
{read f}
!r ready signal Analog
—_—t input
‘ —_—
i
ANALOG A .
TO b Digital Time
1 pIGITAL e output Start
Analoginput | cONVERTOR e version
. e —_— ] I_______
——
i |
Lo
Conversion r
COMPIELE ~  — - o es s mm e e
r
Conversion i@ ]
1
complete ‘y B:fr';al
[ equivalent
V" 1 | to sampled
. PR . 4 1analog value
Fig. A7 Principle of analog- : ? \ .
to-digital conversion [

“quantised” into 8 levels. Suppose that each quantum level is 350 mV. A table
showing the values of analog input voitage with corresponding digital codes will
be:

ANALOG INPUT  DIGITAL CODE
oV 000
035V 001
070 v 010
1.05V 011
1.4V 100
1.75V 101
21V 110
245V 111

Since the analog input is a continuous signal, there will be some uncertainty
over the conversion. This uncertainty is called quantising error and will be
+} LSB.

The useful resolution of an ADC indicates that no missing cod~s will be present
at the digital output. The table above has no missing codes and therefore the 3-bit
ADC can be said to have a useful resolution of 3 bits.

Because of the uncertainty in the conversion, some information detail in the
analog inpur signal will always be lost in the conversion process. This loss can be
munimised by increasing the number of bits used. For example, with an 8-bit
ADC the analog input will be quantised into 256 levels, and a 12-bit ADC will
have 4096 levels.

An ‘mportant parameter of an ADC is the conversion time: the time interval
betwee.. the command being given to start the conversion and the appearance at
tiie output of the complete digital equivalent of the analog input. The speed of
conversion varies with the type of ADC and ranges from the relatively slow
(milliseconds) and cheap, to the ultra fast (50 nsec) and relatively expensive. In
many applications speed may not be the main consideration and an ADC that is -
relatively siow can be used.

There are many ways of performing analog-to-digital conversions. The com-
monly used methods in microelectronic systems are:

Puralle! or simultaneous conversion (flash convertor)

Single ramp and counter Tracking convertor Successive approximation. '

9



1 Parallel or Simultaneous ADC This type, often called a flash convertor, is
the fastest type available. This is because all the bits for the digital representation
of the analog input level are determined simultaneously. The analog input is
applied to a parallel bank of voltage comparators, each of which responds to a
different discrete level of input voltage.

Fig. A8 illustrates the principle for just 3 bits but the available types are usually -
6 or 8 bits. A constant current source supplies a chain of resistors R, to R,. These
set up the levels at which the seven comparators switch,i.e. 0.5V,1V,1.5V,2V
up to 3.5V. K the analog input just exceeds 1.5V, then the outputs. of
comparators A, B and C will be the logic #, while comparators D, E, F and G will
give a logic 1 output. The logic gates then convert the outputs of the comparators
into the 3-bit digital output, #11 in this case. To give @11 at the output, the logic
has inputs

A-B-C-D-E-F-G

For n bits of binary in the conversion, the method requires (2° —1) com-
parators plus a lot of logic. An 8-bit flash convertor requires 255 comparators.
Therefore this method is not cheap, but now that LSI circuits are available it is
increasingly used. An example of the type is the 3300 which is a 6-bit CMOS logic
flash convertor with a conversion speed of 15 MHz (V,, =8 V).

f——osit s
O
b @
) ———0
ENCODING|
LOGIC
}———oBitn
(a) Basic circuit
Fig. A8 Parallel {flash)
convertor {b) Exampls of 3-bit flssh ADC
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