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PREFACE

Control, optimization and matrix theory are closely linked
in many ways, perhaps most strongly by the linear-quadratic
aspects they have in common. The present work seeks to
extend, develop and strengthen this link by presenting a
number of extensions of the well-known 1linear-quadratic
theories. Consequently it should prove to be particularly
useful to graduate students, teachers and researchers in
science and engineering.

In a very definite sense this is a personal volume - it
reflects my attempts over the past five years to understand
and analyse non-linear systems and to contribute new develop-
ments. Inevitably some of the material presented has
previously appeared in one or another form elsewhere in the
literature but many results are being made known here for

the first time.

Certain of the results presented in Chapters 2, 3, 5 and 6
were developed jointly with Drs. J.L. Speyer, W.M. Getz,

M. Pachter and C.A. Botsaris; their contribution and
cooperation is gratefully acknowledged. Dr. D.J. Bell kindly
perused the draft manuscript.

Warm thanks are due to the Executive of the Council for
Scientific and Industrial Research and to Professor R.E.
Bellman who encouraged the project, to Mr. F.R. Baudert and
Dr. D. de Jongh who edited the draft manuscript and proofread
the typescript, and to my secretary Elsa de Beer who expertly
typed the volume.

David H. Jacobson
Pretoria, 1977
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1. INTRODUCTION

The treatments of linear-quadratic control problems given in
[1] are probably the most comprehensive available, though by
now a 1ittle dated in some respects. Both discrete-time and
continuous-time formulations are treated in that reference,
and variational and dynamic programming techniques are used
in the generation of solutions. A perusal of [1] thus
provides a rather good sample of formulations and techniques,
in addition to a good list of textbooks and other references.

In this short chapter we do not very exhaustively review the
material in [1] (most of which is also available elsewhere),
but rather describe loosely but adequately what, for the
purpose of this monograph, constitutes a linear-quadratic
formulation in control, optimization or matrix theory. We
then outline the contents of the following chapters in some
detail in order to elucidate the magnitude of the 'extensions'
presented.

Broadly speaking a linear-quadratic (Gaussian) control
(variational) formulation consists of a finite-dimensional
linear, discrete- or continuous-time, dynamic system which is
to be controlled in such a way as to minimize the value (or
expected value) of a performance criterion which is the
integral, or sum, of quadratic functions of the system state
and control variables plus, perhaps, a quadratic function of
the state at the terminal time. Stochastic formulations
allow additive Gaussian white noise to disturb the dynamic
system, and the outputs that can be measured are assumed to
be Tinear functions of the state and Gaussian white noise.
The most celebrated property of the solution of the non-

1



2 LINEAR-QUADRATIC EXTENSIONS

singular linear-quadratic-problem (often referred to as an
LQP or LQG) is that the optimal control is a linear (time-
varying) function of the state or, in the stochastic case,
the best estimate of the state. The matrix Riccati equation
and, in the singular case [2], matrix inequalities play a
special role in ensuring the existence of the solution.
Questions and assumptions relating to stability, controll-
ability and observability of the system are also important
here.

By a linear-quadratic formulation in matrix theory we mean
the study of the properties of positive (semi-) definite
quadratic functions of a finite number of variables and their
relation to linear equalities and inequalities. Here it is
simply the definiteness of the quadratic function that makes
the formulation standard. If this assumption is relaxed we
have immediately a non-convex quadratic function which has
properties not shared by the convex (positive semi-definite)
case.

We use the term 'optimization', as distinct from 'optimal
control', to describe the problem of finding a minimum of a
function of a finite number of variables subject to equality
and inequality constraints. 'Linear-quadratic' in this con-
text refers to the fact that algorithms for the solution of
the minimization problem are almost always based upon a model
based in turn on the assumptions that the function to be
minimized is a positive-definite quadratic form and that the
constraints are linear.

It is fairly evident from the foregoing descriptions that the
linear-quadratic thread that runs through control, optimiza-
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tion and matrix theory forms a strong conceptual and opera-
tional tie between them. Consequently in this monograph
control, optimization and matrix theory are not strictly
confined to separate chapters: in fact each of them is con-
cerned with these three subjects of study to a greater or
lesser extent.

In Chapter 2 we '‘extend' the linear-quadratic control problem
by first replacing the quadratic performance criterion by the
exponential of a quadratic function. In the deterministic
case we gain nothing by this move, as minimization of an
exponential of a function is equivalent to minimization of
that functional, but in the stochastic case a new, interesting
formulation results. If the state is perfectly measurable
but Gaussian white noise enters linearly into the linear
system, we find that the optimal feedback controller is linear,
as in the linear-quadratic case, but that the controller
depends upon the statistics of the noise, unlike that for the
linear-quadratic case. It turns out, interestingly, that the
controller is equivalent to that obtained when the noise is
treated as a 'belligerent player' in a two-person zero-sum
linear-quadratic game, and this provides new justification
for this type of 'worst case' controller design. If the
measurement of the state is noise-corrupted, the optimal
feedback controller retains its linear character but is in
the general case infinite-dimensional. This is another
surprise when it is recalled that in the linear-quadratic
Gaussian case the controller turns out to be the finite-
dimensional optimal controller for the deterministic case
simply with the state replaced by the best (Kalman) filtered
estimate of the state. An application due to Speyer of the



4 LINEAR-QUADRATIC EXTENSIONS

exponential formulation and solution to homing missile
guidance is also mentioned.

The next 'extension' is obtained by generalizing the linear
dynamic system to a class of restricted non-linear stochastic
systems while retaining the quadratic performance criterion.
The optimal controller is here linear in the system state

but depends upon the noise parameters. Known results due to
Wonham, MclLane and Kleinmann for linear systems with multi-
plicative noise are generalized here.

Next, we turn to the class of non-linear systems homogeneous-
in-the-input. We demonstrate that such systems are asympto-
tically stabilizable under certain conditions which are almost
necessary and sufficient. Furthermore, we show that stabiliz-
ing controllers actually minimize a wide variety of non-
quadratic performance criteria.

We also obtain the solution to the problem of minimizing a
certain non-quadratic performance criterion subject to a
1inear dynamic constraint. This result is generalized by
Speyer to a stochastic version which involves control of a
linear stochastic dynamic system driven by additive and
state-dependent white-noise processes.

Finally in this chapter we study the control of systems of
quadratic and bilinear differential equations and obtain some
limited results, viz. that for a certain class of problems
the optimal feedback controller is Tinear.

Taken as a whole, Chapter 2 illustrates that the linear-
quadratic control problem has been extended in non-trivial
ways both by using performance criteria more general than
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quadratic and by introducing classes of non-linear dynamic

systems. These give rise to both linear and non-linear
controllers.

In Chapter 3 we begin with matrix theory. First, copositive
matrices are introduced. Quite simply a symmetric matrix is
copositive if its associated quadratic form is non-negative
for all vectors having non-negative elements. Interestingly,
it turns out that all copositive matrices are sums of positive
semi~definite matrices and matrices with non-negative elements
(non-negative matrices) if and only if the dimensionality of
the matrix is less than five. We show that this also implies
that all positive semi-definite non-negative matrices have
non-negative factorizations if and only if they are of
dimension less than five. We show further that the represen-
tation for copositive matrices extends beyond dimension five
if a more general type of copositivity, viz. stochastic
copositivity, is defined.

Closely related to copositive quadratic forms is the question
of non-negativity of a quadratic form subject to equality and
inequality quadratic constraints. In the case of one con-
straint Finsler's theorem provides a complete answer, and in
the case of an arbitrary number of constraints we extend
Finsler's theorem to provide a useful sufficient condition.
We use this extension to yield insight into the properties

of the inverse of copositive matrices.

We then turn to symmetric M-matrices which are in fact
positive-definite, and whose inverses are both positive-
definite and non-negative. We show that these inverses have
non-negative factorizations.
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Next we apply copositive matrix theory to the non-convex
quadratic programming problem to provide sufficient conditions
for optimality.

The remainder of Chapter 3 is concerned with a study of the
behaviour of solutions of systems of autonomous quadratic
differential equations. Specifically we develop two sets of
sufficient conditions for a solution to exhibit a finite
escape time. The first set is similar to certain conditions
obtained by Freeman, while the second set, being based upon
our results for non-convex quadratic programming derived
earlier, is less restrictive owing to our non-trivial use of
the notion of invariant sets.

Chapter 4 contains what we believe are significant extensions
of our results in [2] for the non-negativity of quadratic
functionals. First we review and reformulate certain impor-
tant sufficient conditions for the non-negativity of uncon-
strained quadratic functionals and extend these to the case
where the control variables are constrained. A novel Riccati
differential equation results from this approach. Next we
further extend these sufficient conditions to a general class
of non-quadratic, non-linear, constrained problems. Our
results bear a resemblance to certain controllability condi-
tions derived by Kunzi and Davison, and allow us to relate
the non-negativity of non-quadratic functionals to that of a
class of non-autonomous quadratic functionals.

Chapter 5 is concerned with the controllability of autonomous
linear dynamic systems in which the control variables are
constrained to lie within a certain constraint set. It is
well known that, provided zero belongs to the interior of the
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convex hull of the constraint set, such a linear system is
null-controllable if and only if it is completely controllable
when the constraint is removed. More recently Brammer has
provided necessary and sufficient conditions for null-
controllability when zero does not belong to the interior of
the convex hull of the constraint set. Arbitrary-interval
null-controllability, introduced in Chapter 5, requires that
the system be controllable on any time interval, this being

a more demanding requirement than null-controllability. As

js well known, a system is arbitrary-interval null-controll-
able if it is null-controllable and if zero belongs to the
interior of the convex hull of the constraint set, The main
purpose of Chapter 5, then, is to provide necessary and
sufficient conditions for arbitrary-interval nuli-controll-
ability when the constraint set is of general type. Most
interesting is the role of arbitrary-interval null-controll-
ability as a necessary and sufficient condition for continuity
of the minimum time function in time-optimal control of an
autonomous linear dynamic system.

In Chapter 6 we proceed to function minimization. We discuss
the properties of a homogeneous model in comparison with a
quadratic model and refer to a convergent algorithm for use
on general functions. We also refer to the recent work of
Kowalik who has further improved the effectiveness of the
algorithm by introducing a highly stable numerical method

in place of the Householder updating used in the first
versions of the homogeneous algorithms.

Next in Chapter 6 we introduce the differential descent
approach presented in [3] and further developed extensively
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by Botsaris. In this approach curvilinear, as opposed to
linear search paths are used, which are developed by approxi-
mating the trajectories of steepest descent in appropriate
ways. Such methods have considerable advantages in that they
do not fail when Newton's method does, and automatically
behave as gradient methods when far from the minimum of the
function to be minimized, and as Newton's method when in the
neighbourhood of the minimum.

Chapter 7 briefly assesses the earlier ones and indicates
areas for further research.
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2. NON-LINEAR-QUADRATIC CONTROL PROBLEMS
2.1 Exponential Performance Criterion - Perfect Measurements

We consider in this section the optimal control of a linear

discrete-time dynamic system disturbed by additive Gaussian

white noise. In place of a quadratic performance criterion

we use an exponential one [11-[3]. We assume that the state
of the system can be measured perfectly.

The assumption of Gaussian noise is deliberate - indeed it is
the exponential nature of the Gaussian density function which
matches the exponential nature of the performance criterion
and results in the linear form of the optimal feedback
controller.

2.1.1 Discrete-time Formulation

We consider a linear discrete-time dynamic system described
by

Xs1 = AXic * BUy * Ty k=0,...,8-15 x ) given
(2.1.1)

where the 'state' vector Xy € Rn, the control vector u, € R™,
and the Gaussian noise input w, € RY. The known matrices Ak’
Bk’ Fk have appropriate dimensions and may vary as a function
of the index k.

The noise input is a sequence of independently distributed
Gaussian random variables having probability density

N-1

pw(mo""’wN-l) = kEop(mk;k) (2.1.2)



