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Preface

This book is intended for the young student who is interested in graph
theory and wishes to study it as part of his mathematical education. Ex-
perience at Cambridge shows that none of the currently available texts meet
this need. Either they are too specialized for their audience or they lack the
depth and development needed to reveal the nature of the subject.

We start from the premise that graph theory is one of several courses
which compete for the student’s attention and should contribute to his
. appreciation of ‘mathematics as a whole. Therefore, the book does not
consist merely of a catalogue of results but also contains extensive descriptiygy
passages designed to convey the flavour of the subject and to arouse the
student’s interest. Those theorems which are vital to the development are
stated clearly, together with full and detailed proofs. The book thereby
offers a leisurely introduction to graph theory which culminates in a thorough
grounding in most aspects of the subject.

Each chapter contains three or four sections, exercises and bibliographical
notes. Eleméntary exercises are marked with a ~ sign, while the difficult
ones, marked by * signs, are often accompanied by detailed hints. In the
opening sections the reader is led gently through the material: the results
are rather simple and their easy pi'oofs are presented in detail. The later
sections are for those whose interest in the topic has been excited : the theorems
tend to be deeper and their proofs, which may not be simple, are described
more rapidly. Throughout this book the reader will discover connections
with various other branches of mathematics, including optimization theory,
linear algebra, groun theory, projective geometry, representation theory,
probability theory, analysis, knot theory and ring theory. Although most
of these connections are not essential for an understanding of the book, the
reader would benefit greatly from a modest acquaintance with these subjects.
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. viil Preface
The bibliographical notes are not intended to be exhaustive but rather to
guide the reader to additional material.

I am grateful to Andrew Thomason for reading the manuscript carefully
and making many useful suggestions. John Conway has also taught the
graph theory course at Cambridge and I am particularly indebted to him for
detailed advice and assistance with Chapters II and VIII. I would like to
thank Springer-Verlag and especially Joyce Schanbacher for their efficiency
and great skill in producing this book.

Cambridge » ~ Béla Bollobas
April 1979 ‘
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CHAPTER 1
Fundamentals

The purpose of this introduction is to familiarise the reader with the basic
concepts and results of graph theory. The chapter inevitably contains a
large number of definitions and in order to prevent the reader growing
weary we prove simple results as soon as possible. The reader is not expected
to have complete mastery of Chapter I before sampling the rest of the
book, indeed, he is encouraged to skip ahead since most of the terminology
is self-explanatory. We should add at this stage that the terminology of
graph theory is far from being standard, though that used in this book is
well accepted.

§1 Definitions

A graph G is an ordered pair of disjoint sets (¥, E) such that E is a subset
of the set of unordered pairs of V. Unless it is explicitly stated otherwise, we
consider only finite graphs, that is V and E are always finite. The set V is
the set of vertices and E is the set of edges. If G is a graph then V = V(G)
is the vertex set of G and E = E(G) is the edge set. An edge {x, y} is said to
Join the vertices x and y and is denoted by xy. Thus xy and yx mean exactly
the same edge: the vertices x and y are the endvertices of this edge. W xy € E(G)
then x and y are adjacent or neighbouring vertices of G and the vertices x
and y are incident with the edge xy. Two edges are adjacent if they have
exactly one common endvertex.

As the terminology suggests, we do not usually think of a graph as an
ordered pair, but as a collection of vertices some of which are joined by

1



2 . I Fundamentals

4
Figure I1. A graph.

edges. It is then a natural step to draw a picture of the graph. In fact, some-
times the easiest way to describe a graph is to draw it; the graph G =
({1,2,3,4,5,6}, {12, 14,16, 25, 34, 36, 45, 56}) is immediately comprehended
by looking at Figure L.1.

We say that G’ = (V', E'Y is a subgraph of G = (V,E) if V' c V and
E’ < E. In this case we write G' < G. If G’ contains all edges of G that join
two vertices in V' then G’ is said to be the subgraph induced or spanned by
V' and is denoted by G[V’]. A subgraph G’ of G is an induced subgraph if
G' = G[V(G")]. If V' =V, then G’ is said to be a spanning subgraph of G.
These concepts are illustrated in Figurz 1.2.

We shall often construct new graphs from old ones by deleting or adding
some vertices and edges. If W < V(G) then G — W = G[V\W] is the sub-
graph of G obtained by deleting the vertices in W and all edges incident with
them. Similarly if E' < E(G) then G — E' = (V(G), E(G)\E). f W = {w}
and E' = {xy} then this notation is simplified to G —w and G — xy.
Similarly, if x and y are non-adjacent vertices of G then G + xy is obtained
from G by joining x to y. ‘

If x is a vertex of a graph G then instead of x € V(G) we usually write
x € G. The order of G is the number of vertices; it is denoted by |G|. The
same notation is used for the number of elements (cardinality) of a set: | X|
denotes the number of elements of the set X. Thus {G| = | V(G)|. The size
of G is the number of edges; it is denoted by e(G). We write G for an

i
e

A
2 / o6 i Y

Figure [.2. A subgraph, an induced subgraph and a spanning subgraph of the graph
in Figure I.1.
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Figure 1.3. Graphs of order at most 4 and size 3.

arbitrary graph of order n. Similarly G(n, m) denotes an arbitrary graph of
order n and size m.

Two graphs are isomorphic if there is a correspondence between their
vertex sets that preserves adjacency. Thus G = (V, E) is isomosphic to
G’ = (V', E') if there is a bijection ¢: V — V' such that xy € E iff ¢(x)¢(y)e E'.
Clearly isomorphic graphs have the same order and size. Usually we do
not distinguish between isomorphic graphs, unless we consider graphs with
a distinguished or labelled set of vertices (for example, subgraphs of a given
graph). In accordance with this convention, if G and H are isomorphic
graphs then we write either G = H or simply G = H. In Figure 1.3 we show
all graphs (within isomorphism) that have order at most 4 and size 3.

The size of a graph of order n is at least 0 and at most (%). Clearly for
every m, 0 < m < (3), there is a graph G(n, m). A graph of order n and size
(2) is called a complete n-graph and is denoted by K”; an empty n-graph E*
- has order n and no edges. In K" every two vertices are adjacent, while in E"
no two vertices are adjacent. The graph K! = E! is said to be trivial.

The set of vertices adjacent to a vertex x € G is denoted by I'(x). The
degree of x is d(x) = |I'(x)|. If we want to emphasize that the underlying
graphis G then we write I'g(x) and d(x); a similar convention will be adopted
for other functions depending on an underlying graph. Thusifx € H = G[W]
then .

Iy(x) = {ye H: xye E(H)} = I'g(x) " W.

The minimum degree of the vertices of a graph G is denoted by &(G) and
the maximum degree by A(G). A vertex of degree O is said to be an isolated
vertex. If (G) = A(G) = k, that is every vertex of G has degree k then G
is said to be k-regular or regular of degree k. A graph is regular if it is k-
regular for some k. A 3-regular graph is said to be cubic. ,

HV(G) = {x, x;,..., x,} then (d(x,))] is a degree sequence of G. Usually
we order the vertices in such a way that the degree sequence obtained in
this way is monotone increasing or monotone decreasing, for example
6(G) = d(x,) < --- < d(x,) = AG). Since each edge has two endvertices,
the sum of the degrees is exactly twice the number of edges:

Y, d(x;) = 2e(G). (1}
i
In particular, the sum of degrees is ever:

i d(x) =0 (mod 2). )



4 I Fundamentals

This last observation is sometimes called the handshaking lenuna, since it

expresses the fact that in any party the tota! number of hands shaken is

even, Equivalently, (2) states that the number of vertices of odd degree is

even. We see also from (1) that #G) < L2e(G}/n 1 and A(G) = [2e{G)/n].

Here | x| denotes the greatest integer not greater than x and [x} = —| —x}.
A path is a graph P of the form

VIP) = {Xg> X1, .- s X1} E(P) = {X¢X1: X1 X300y X111 X0

This path P is usually denoted by x4x, ... x;. The vertices x, and x, are the
endvertices of P and | = e(P) is the length of P. We say that P is a path
Jromi x4 to x, or an x4-x; path. Of course, P is also a path from x, to x, or an
X;-X, path. Sometimes we wish 1¢ emphasize that P is considered to go
from x, to x; and then call x, the initial and x, the rerminal vertex of P. A
path with initial vertex x is an x-path.

The term independent will be used in connection with vertices, edges and
paths of a graph. A set of vertices {edges) is independent if no two elements
of it are adjacent; a set of paths is independent if for any two paths each
vertex belonging to both paths is an endvertex of both. Thus P,, P,,..., P,
are independent x-y paths iff V(P;) n V(P;) = {x, y} whenever i # j. Also,
W < V(G) consists of independent vertices iff G{W] is an empty graph.

Most paths we consider are subgraphs of a given graph G. Awalk Win G
is an alternating sequence of vertices and cdges, say xq, 0y, Xy, %3, ..., 04, X;
where o; = x;_,x;, 0 < i <1 In accordance with the terminoclogy above,
W is an x4-x; walk and is denoted by x¢xy ... x;; the length of Wis [ This
walk Wis called a trail if all its edges are distinct Note that a path is a walk
with distinct vertices, A trail whose endvertices coincide (a closed trail) is
called a circuit. If a walk W = xyx; ... x; 1s such that | > 3, x, = x; and
the vertices x;, 0 < i < [, are distinct from each other and x, then W is said
to be a cycle. For simplicity this cycle is denoted by xx, ... x;. Note that
the notation differs from that of & path since x,x; is also an edge of this
cycle. Furthermore, xyx,...X;, X;Xj—7...X3, X2X3...%Xg, XiXjeq ..
XX X;—y ... X;4+, all denote the same cycle.

The symbol P’ denotes an arbitrary path of length | and C' denotes a
cycle of length |. We call C*? a triangle, Ci a quadrilateral, C* a pentagon, etc.
(See Figure 1.4). A cycle is even (odd) if it6 length is even (odd)

Given vertices x, y, their distance d(x, y) is the minimum length of an
x-y path. If there is no x-y path then d(x, y) = o

A graph is connected if for every pair {x, y} of distinct vertices there is a
path from x tqg y. Note that a connected graph of order at least 2 cannot
contain an isolated verion, A maximal connecred subgraph is a component

¢ ES B et Y

/1 '\\ - . : { AN
/1N SN {
LN . ’ L

S

Figure 1.4, The graphs K4, B, P* % and C%.
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Figure 1.5. A forest.

of the graph. A cutvertex is a vertex whose deletion increases the number of
components. Similarly an edge is a bridge if its deletion increases the number
of components. Thus an edge of a connected graph is a bridge if its deletion
disconnects the graph. A graph without any cycles is a forest or an acyclic
~ graph; a tree is a connected forest. (See Figure 1.5.) The relation of a tree to a

forest sounds less absurd if we note that a forest is a disjoint union of trees;
in other words, a forest is a graph whose every component is a tree.

A graph G is a bipartite graph with vertex classes Vy and V, if V(G) =
Viu V., ¥V, n ¥, = & and each edge joins a vertex of ¥, to a vertex of V,.
Similarly G is r-partite with vertex classes Vi, V,, ..., V,if V(G) = Vi u 1, U
UV, V;nV,=(F whenever 1 <i<j<r, and no edge joins two
vertices in the same class. The graphs in Figure 1.1 and Figure L5 are bi-
partite. The symbol K(n,,...,n,) denotes a complete r-partite graph: it
has n; vertices in the ith class and contains all edges joining vertices in
distinct classes. For simplicity we often write K?? instead of K(p, ) and
K,(1) instead of K(, .. ., ©).

We shall write G u H = (V(G) v V(H), E(G) u E(H)) and kG for the
union of k disjoint copies of G. We obtain the join G + H from GU H
by adding all edges between G and H. Thus, for example, K** = E? + E*
and K(t)=E'+.--+ E"

There are several notions closely related to that of a graph. A hypergraph
is a pair (V, E) such that VN E = ¢f and E is a subset of #(V), the power
set of V, that is the set of all subsets of V. In fact, there is a simple 1-1 cor-
respondence between the class of hypergraphs and the class of certain
bipartite graphs. Indeed, given a hypergraph (¥, E), construct a bipartite
graph with vertex classes V and E by joining a vertex x € J to a hyperedge
SeEiff xeSs.

By definition a graph does not contain a loop, an “edge” joining a vertex
to itself; neither does it contain multiple edges, that is several “edges™
joining the same two vertices. In a multigraph both multiple edges and
multiple loops are allowed; a loop is a special edge.

If the edges are ordered pairs of vertices then we get the nctions of a
directed graph and directed multigraph. An ordered pair {0, b) is said to be
an edge directed from a to b, or an edge beginning at a and ending at b, and
is denoted by ab or simply ab. The notions defined for graphs are easily
carried over to multigraphs, directed graphs and directed multigraphs,
mutatis mutandis. Thus a (directed trail in a directed multigraph is an



