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Preface

As analytical chemists, we are often called upon to participate in studies that
require the measurement of chemical or physical properties of materials. In many
cases, it is evident that the measurements to be made will not provide the type of
information that is required for the successful completion of the project. Thus, we
find ourselves involved in more than just the measurement aspect of the investiga-
tion —~ we become involved in carefully (re)formulating the questions to be answered
by the study, identifying the type of information required to answer those questions,
making appropriate measurements, and interpreting the results of those measure-
ments. In short, we find ourselves involved in the areas of experimental design, data
acquisition, data treatment, and data interpretation,

These four areas are not separate and distinct, but instead blend together in
practice. For example, data interpretation must be done in the context of the
original experimental design, within the limitations of the measurement process used
and the type of data treatment employed. Similarly, data treatment is limited by the
experimental design and measurement process, and should not obscure any infor-
mation that would be useful in interpreting the experimental results. The experimen-
tal design itself is influenced by the data treatment that will be used, the limitations
of the chosen measurement process, and the purpose of the data interpretation.

Data acquisition and data treatment are today highly developed areas. Fifty years
ago, measuring the concentration of fluoride ion in water at the parts-per-million
level was quite difficult; today it is routine. Fifty years ago, experimenters dreamed
about being able to fit models to large sets of data; today it is often trivial,

Experimental design is also today a highly developed area, but it is not easily or
correctly applied. We believe that one of the reasons “experimental design” is not
used more frequently (and correctly) by scientists is because the subject is usually
taught from the point of view of the statistician rather than from the point of view
of the researcher. For example, one experimenter might have heard about factorial
designs at some point in her education, and applies them to a system she is currently
investigating; she finds it interesting that there is a “highly significant interaction”
between factors A and B, but she is disappointed that all this work has not revealed
to her the particular combination of A and B that will give her optimal results from
her system. Another experimenter might be familiar with the least squares fitting of
straight lines to data; the only problems he chooses to investigate are those that can
be reduced to straight-line relationships. A third experimenter might be asked to do
a screening study using Plackett-Burman designs; instead, he transfers out of the
research division,
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We do not believe that a course on the design of experiments must necessarily be
preceded by a course on statistics. Instead, we have taken the approach that both
subjects can be developed simultaneously, complementing each other as needed, in a
course that presents the fundamentals of experimental design.

It is our intent that the book can be used in a number of fields by advanced
undergraduate students, by beginning graduate students, and (perhaps more im-
portant) by workers who have already completed their formal education. The
material in this book has been presented to all three groups, either through regular
one-semester courses, or through intensive two- or three-day short courses. We have
been pleased by the confidence these students have gained from the courses, and by
their enthusiasm as they study further in the areas of statistics and experimental
design.

The text is intended to be studied in one way only - from the beginning of
Chapter 1 to the end of Chapter 12. The chapters are highly integrated and build on
each other: there are frequent references to material that has been covered in
previous chapters, and there are many sections that hint at material that will be
developed more fully in later chapters.

The text can be read “straight through” without working any of the exercises at
the ends of the chapters; however, the exercises serve to reinforce the material
presented in each chapter, and also serve to expand the concepts into areas not
covered by the main text. Relevant literature references are often given with this
latter type of exercise.

The book has been written around a framework of linear models and matrix least
squares. Because we authors are so often involved in the measurement aspects of
investigations, we have a special fondness for the estimation of purely experimental
uncertainty. The text reflects this prejudice. We also prefer the term “purely
experimental uncertainty” rather than the traditional “pure error”, for reasons we
as analytical chemists believe should be obvious.

One of the important features of the book is the sums of squares and degrees of
freedom tree that is used in place of the usual ANOVA tables. We have found the
“tree” presentation to be a more effective teaching tool than ANOVA tables by
themselves,

A second feature of the book is its emphasis on degrees of freedom. We have
tried to remove the “magic” associated with knowing the source of these numbers
by using the symbols # (the total number of experiments in a set), p (the number of
parameters in the model), and f (the number of distinctly different factor combina-
tions in the experimental design). Combinations of these symbols appear on the
“tree” to show the degrees of freedom associated with various sums of squares (e.g.,
n—f for SS,.).

A third feature is the use of the J matrix (a matrix of mean replicate response) in
the least squares treatment. We have found it to be a useful tool for teaching the
effects (and usefulness) of replication.

We are grateful to a number of friends for help in many ways. Grant Wernimont
and L. B. Rogers first told us why statistics and experimental design should be
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important to us as analytical chemists. Ad Olansky and Lloyd Parker first told us
why a clear presentation of statistics and experimental design should be important
to us; they and Larry Bottomley aided greatly in the early drafts of the manuscript.
Kent Linville provided many helpful comments on the early drafts of the first two
chapters. A large portion of the initial typing was done by Alice Ross; typing of the
final manuscript was done by Lillie Gramann. Their precise work is greatly
appreciated.

We are grateful also to the Literary Executor of the late Sir Ronald A. Fisher, F.
R. S., to Dr. Frank Yates, F. R. S, and to Longman Group Ltd., London, for
permission to partially reprint Tables Il and V from their book Statistical Tables
Jor Biological, Agricultural and Medical Research, 6th ed., 1974.

Finally, we would like to acknowledge our students who provided criticism as we
developed the material presented here.

S. N. Deming S. L. Morgan
Houston, Texas Columbia, South Carolina
August 1986
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CHAPTER 1

System Theory

General system theory is an organized thought process to be followed in relating
cause and effect. The system is treated as a bounded whole with inputs and outputs
external to the boundaries, and transformations occurring within the boundaries.
Inputs, outputs, and transformations can be important or trivial — the trick is to
determine which. The system of determination involves a study and understanding
of existing theory in the chosen field; a study and understanding of past observa-
tions and experiments more specific to the chosen problem; and new experiments
specific to the problem being studied.

General system theory is a highly versatile tool that provides a useful means of
investigating many research and development projects. Although other approaches
to research and development often focus on the detailed internal structure and
organization of the system, our approach here will be to treat the system as a whole
and to be concerned with its overall behavior.

1.1. Systems

A system is defined as a regularly interacting or interdependent group of items
forming a unified whole. A system is described by its borders, by what crosses the
borders, and what goes on inside. Thus, we often speak of a solar system when
referring to a sun, its planets, their moons, etc.; a thermodynamic system when we
are describing compounds in equilibrium with each other; and a digestive system if
we are discussing certain parts of the body. Other examples of systems are
ecological systems, data processing systems, and economic systems. We even speak
of the system when we mean some part of the established order around us, some
regularly interacting or interdependent group of items forming a unified whole of
which we are a part.

General system theory views a system as possessing three basic elements — inpus,
transforms, and outputs (see Figure 1.1). An example of a simple system is the
mathematical relationship

y=x+2. (1.1)

This algebraic system is diagrammed in Figure 1.2. The input to the system is the
independent variable x. The output from the system is the dependent variable y.



INPUTS — TRANSFORMS r——> OUTPLTS

Figure 1.1. General system theory view of relationships among inputs, transforms, and outputs.

X Y=X+2 > Y

Figure 1.2. General system theory view of the algebraic relationship p = x +2.

The transform that relates the output to the input is the well defined mathematical
relationship given in Equation 1.1. The mathematical equation transforms a given
value of the input, x, into an output value, y. If x=0, then y=2. If x =5, then
y =17, and so on. In this simple system, the transform is known with certainty.
Figure 1.3 is a system view of a wine-making process. In this system, there are

YERST —— WINE=MAK | NG > % ALCOHOL

FRUIT —> PROCESS L~ 'ROUBLET

Figure 1.3. General system theory view of a wine-making process.

INPUT | ——sfs ] et UTPUT |
iNPLT 2 —fed 1"}t puTRUT 2
INPUT 3 —- ¥ _pt— DUTRUT 3
..... L ..

INPUT K ——> > OUTRUT M

Figure 1.4. General system theory view emphasizing internal structures and relationships within a system.



two inputs (yeast and fruit), two outputs (percent alcohol and “bouquet”), and a
transform that is probably not known with certainty.

Most systems are much more complex than the simple examples shown here. In
general, there will be many inputs, many outputs, many transforms, and consider-
able subsystem structure. A more realistic view of most systems is probably similar
to that shown in Figure 1.4.

1.2. Inputs

We will define a system inpur as a quantity or quality that might have an
influence upon the system.

The definition of a system input is purposefully broad. It could have been made
narrower to include only those quantities and qualities that do have an influence
upon the system. However, because a large portion of the early stages of much
research and development is concerned with determining which inputs do have an
influence and which do not, such a narrow definition would assume that a
considerable amount of work had already been carried out. The broader definition
used here allows the inclusion of quantities and qualities that might eventually be
shown to have no influence upon the system, and is a more useful definition for the
early and speculative stages of most research.

We will use the symbol x with a subscript to represent a given input. For
example, x; means “input number one”, x, means “input number two”, x; means
“the ith input”, and so on.

The intensity setting of an input is called a level. It is possible for an input to be
at different levels at different times. Thus, x; might have had the value 25 when we
were first interested in the system; now we might want x, to have the value 17. To
designate these different sets of conditions, a second subscript is added. Thus,
x;; =25 means that in the first instance, x; = 25; and x,, =17 means that in the
second instance, x; = 17.

Ambiguity is possible with this notation: e.g., x,;, might refer to the level of
input number one under the 37th set of conditions, or it might refer to the level of
input 13 under the seventh set of conditions, or it might refer to input number 137.
To avoid this ambiguity, subscripts greater than nine can be written in parentheses
or separated with commas. Thus, x,;, and x, 5, refer to the level of input number
one under the 37th set of conditions, x,;, and x,;, refer to the level of input 13
under the seventh set of conditions, and x,;,,) and x,;, refer to input number 137.

Input variables and factors

A system variable is defined as a quantity or quality associated with the system
that may assume any value from a set containing more than one value. In the



algebraic system described previously, “x” is an input variable: it can assume any
one of an infinite set of values.

“Yeast” and “fruit” are input variables in the wine-making process. In the case
of yeast, the amount of a given strain could be varied, or the particular type of yeast
could be varied. If the variation is of extent or quantity (e.g., the use of one ounce of
yeast, or two ounces of yeast, or more) the variable is said to be a quantitative
variable. If the variation is of type or quality (e.g., the use of Saccharomyces
cerevisiae, or Saccharomyces ellipsoideus, or some other species) the variable is said
to be a qualitative variable. Thus, “yeast” could be a qualitative variable (if the
amount added is always the same, but the type of yeast is varied) or it could be a
quantitative variable (if the type of yeast added is always the same, but the amount
is varied). Similarly, “fruit” added in the wine-making process could be a qualitative
variable or a quantitative variable. In the algebraic system, x is a quantitative
variable.

A factor is defined as one of the elements contributing to a particular result or
situation. It is an input that does have an influence upon the system.

In the algebraic system discussed previously, x is a factor; its value determines
what the particular result y will be. “Yeast” and “fruit” are factors in the
wine-making process; the type and amount of each contributes to the alcohol
content and flavor of the final product.

In the next several sections we will further consider factors under several
categorizations,

Known and unknown factors

In most research and development projects it is important that as many factors as
possible be known. Unknown factors can be the witches and goblins of many
projects — unknown factors are often uncontrolled, and as a result such systems
appear to behave excessively randomly and erratically. Because of this, the initial
phase of many research and development projects consists of screening a large
number of input variables to see if they are factors of the system; that is, to see if
they have an effect upon the system.

The proper identification of factors is clearly important (see Table 1.1). If an
input variable /s a factor and it is identified as a factor, the probability is increased
for the success of the project. If an input variable truly is a factor but it is not

TABLE 1.1
Possible outcomes in the identification of factors.

Type of Identified as a factor Not identified as a factor
input variable

A factor Desirable for research and development  Random and erratic behavior
Not a factor Unnecessary complexity Desirable for research and development




included as an input variable and/or is not identified as a factor, random and
erratic behavior might result. If an input variable is nor a factor but it is falsely
identified as a factor, an unnecessary input variable will be included in the
remaining phases of the project and the work will be unnecessarily complex. Finally,
if an input variable is not a factor and is not identified as a factor, ignoring it will
be of no consequence to the project.

The first and last of the above four possibilities are the desired outcomes. The
second and third are undesirable outcomes, but undesirable for different reasons and
with different consequences. The third possibility, falsely identifying an input variable
as a factor, is unfortunate but the consequences are not very serious: it might be
expensive, in one way or another, to carry the variable through the project, but its
presence will not affect the ultimate outcome. However, the second possibility, not
identifying a factor, can be very serious: omitting a factor can often cause the
remaining results of the project to be worthless.

In most research and development, the usual approach to identifying important
factors uses a statistical test that is concerned with the risk (a) of stating that an
input variable is a factor when, in fact, it is not — a risk that is of relatively little
consequence (see Table 1.1). Ideally, the identification of important factors should
also be concerned with the potentially much more serious risk ( 8) of stating that an
input variable is not a factor when, in fact, it is a factor (see Table 1.1). This subject
is discussed further in Chapter 6.

In our representations of systems, a known factor will be shown as a solid arrow
pointing toward the system; an unknown factor will be shown as a dotted arrow
pointing toward the system (see Figure 1.5).

Controlled and uncontrolled factors

The word *“control” is used here in the sense of exercising restraint or direction
over a factor — that is, the experimental setting of a factor to a certain quantitative
or qualitative value.

Controllable factors are desirable in experimental situations because their effects
can usually be relatively easily and unambiguously detected and evaluated. Exam-
ples of individual controllable factors include x, yeast, fruit, temperature, concentra-
tion, time, amount, number, and size.

Uncontrollable factors are undesirable in experimental situations because their
effects cannot always be easily or unambiguously detected or evaluated. Attempts

KNOWN FRCTOR —>
SYSTEM
UNKNOWN FACTOR -eeveeese

Figure 1.5. Symbols for a known factor (solid arrow) and an unknown factor (dotted arrow).
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Figure 1.6. Symbols for controlled factors (arrows with dot at tail) and an uncontrolled factor (arrow
without dot).

are often made to minimize their effects statistically (e.g., through randomization of
experiment order — see Section 12.2) or to separate their effects, if known, from
those of other factors (e.g., by measuring the level of the uncontrolled factor during
each experiment and applying a “known correction factor” to the experimental
results). Examples of individual uncontrollable factors include incident gamma ray
background intensity, fluctuations in the levels of the oceans, barometric pressure,
and the much maligned “phase of the moon”.

A factor that is uncontrollable by the experimenter might nevertheless be
controlled by some other forces. Incident gamma ray background intensity, fluctua-
tions in the levels of the oceans, barometric pressure, and phase of the moon cannot
be controlled by the experimenter, but they are “controlled” by the “Laws of
Nature”. Such factors are usually relatively constant with time (e.g., barometric
pressure over a short term), or vary in some predictable way (e.g., phase of the
moon).

A controlled factor will be identified as an arrow with a dot at its tail; an
uncontrolled factor will not have a dot. In Figure 1.6, temperature is shown as a
controlled known factor; pressure is shown as an uncontrolled known factor.
“Yeast” and “fruit” are presumably controlled known factors.

Intensive and extensive factors

Another categorization of factors is based upon their dependence on the size of a
system. The value of an intensive factor is not a function of the size of the system.
The value of an extensive factor is a function of the size of the system.

The temperature of a system is an intensive factor. If the system is, say, 72°C,
then it is 72°C independent of how large the system is. Other examples of intensive
factors are pressure, concentration, and time,

The mass of a system, on the other hand, does depend upon the size of the



