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Preface

Few techniques involving sophisticated instrumentation have made so
rapid an impact on chemistry as has nuclear magnetic resonance. Within
five years after the discovery that NMR frequencies depended upon the
chemical environments of nuclei, commercial instruments capable of resolv-
ing resonance lines separated by less than 0.1 part per million (ppm) were
available. Chemists immediately found NMR to be a valuable tool in struc-
ture elucidation, in investigations of kinetic phenomena, and in studies of
chemical equilibria. Rapid developments in our understanding of NMR
phenomena and their relation to properties of chemical interest continue
today unabated, and dramatic instrumental developments have improved
resolution and sensitivity by factors of ~50 from the first commercial in-
struments. Today more than 1500 NMR spectrometers are in use, and the
scientific literature abounds in reference to NMR data.

In the course of teaching the background and applications of NMR both
to graduate students and to established chemists who wanted to learn more
of this technique, I have felt the need for a textbook at an “intermediate”
level of complexity—one which would provide a systematic treatment of
those portions of NMR theory most needed for the intelligent and efficient
utilization of the technique in various branches of chemistry and yet one
which would avoid the mathematical detail presented in the several excellent
treatises on the subject.

In this book I have attempted to present an explanation of NMR theory
and to provide sufficient practical examples of the use of NMR to permit
the reader to develop a clear idea of the many uses—and the limitations—

v



vi Preface

of this technique. Many practical points of experimental methods are dis-
cussed, and pitfalls pointed out. A large collection of problems and spectra
of “unknown” compounds of graded difficulty permits the student to test
his knowledge of NMR principles. Answers to selected problems are given.
I have not attempted to include large compendia of data, but ample litera-
ture references and lists of data tabulations and reviews should permit the
reader to locate the specialized data needed for specific applications. Many
of the literature references are to recent reviews or to other books, rather
than to original articles, since the references are intended to provide guides
to further reading, not to give credit for original contributions. Under these
circumstances an author index would be pointless and has not been included.

EpwiN D. BECKER
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Chapter 1

Introduction

1.1 Historical

Many atomic nuclei behave as though they are spinning, and as a result
of this spin they possess angular momentum and magnetic moments. These
two nuclear properties were first observed indirectly in the very small splittings
of certain atomic spectral lines (hyperfine structure). In 1924 Pauli! suggested
that this hyperfine structure resulted from the interaction of magnetic moments
of nuclei with the already recognized magnetic moments of electrons in the
atoms. Analysis of the hyperfine structure permitted the determination of the
angular momentum and magnetic moments of many nuclei.

The concept of nuclear spin was strengthened by the discovery (through
heat capacity measurements) of ortho and para hydrogen2—molecules that
differ only in having the two constituent nuclei spinning in the same or opposite
directions, respectively.

In the early 1920’s Stern and Gerlach?® had shown that a beam of atoms
sent through an inhomogeneous magnetic field is deflected according to the
orientation of the electron magnetic moments relative to the magnetic field.
During the 1930’s refinements of the Stern-Gerlach technique permitted the
measurement of the much smaller values of nuclear magnetic moments.* A
major improvement in this type of experiment was made by Rabi and his
co-workers? in 1939. They sent a beam of hydrogen molecules through first
an inhomogeneous magnetic field and then a homogeneous field, and they
applied radio-frequency (rf) electromagnetic energy to the molecules in the
homogeneous field. At a sharply defined frequency, energy was absorbed by

the molecular beam and caused a small but measurable deflection of the beam.
1



2 1. Introduction

This actually was the first observation of nuclear magnetic resonance, but
such studies were performed only in molecular beams under very high vacuum.
It was not until 1946 that nuclear magnetic resonance was found in bulk
materials (solids or liquids). In that year Purcell and his co-workers at Harvard
reported nuclear resonance absorption in paraffin wax,® while Bloch and his
colleagues at Stanford found nuclear resonance in liquid water.” (They
received the 1952 Nobel Prize for their discovery.) When we speak of nuclear
magnetic resonance, we are really thinking of the kind of NMR discovered by
Bloch and Purcell; that is, nuclear magnetic resonance in bulk materials.

The early work in NMR was concentrated on the elucidation of the basic
phenomena and on the accurate determination of nuclear magnetic moments.
NMR attracted little attention from chemists until, in 1949 and 1950, it was
discovered that the precise resonance frequency of a nucleus depends on the
state of its chemical environment.® In 1951 separate resonance lines were
found for chemically different protons in the same molecule.® The discovery
of this so-called chemical shift set the stage for the use of NMR as a probe
into the structure of molecules; this is the aspect of NMR that we shall explore

in this book.

1.2 High Resolution NMR

It is found that chemical shifts are very small, and in order to observe
such shifts one must study the material in the right state of aggregation. In
solids, where intermolecular motion is highly restricted, internuclear inter-
actions cause such a great broadening of resonance lines that chemical shift
differences are masked. In solution, on the other hand, the rapid molecular
tumbling causes these interactions to average to zero, and sharp lines are
observed. Thus there is a distinction between broad line NMR and high
resolution, or narrow line, NMR. We shall deal almost exclusively with the
latter.

An NMR spectrum is obtained by placing a sample in a homogeneous
magnetic field and applying electromagrietic energy at suitable frequencies.
In Chapter 2 we shall examine in detail just how NMR spectra arise, and in
Chapter 3 we shall delve into the procedures by which NMR is studied. Before
we do so, however, it may be helpful to see by a few examples the type of
information that can be obtained from an NMR spectrum.

Basically there are three quantities that can be measured in a high resolu-
tion NMR spectrum: (1) frequencies, (2) areas, and (3) widths or shapes of the
resonance lines. Figure 1.1 shows the spectrum of a simple compound,
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6 1. Introduction

diacetone alcohol. This spectrum, as well as the others shown in this chapter,
arises only from the resonance of the hydrogen nuclei in the molecule. (We
shall see in Chapter 2 that we normally obtain a spectrum from only one kind
of nucleus and discriminate against the others.) The line at zero on the scale
below the spectrum is a reference line (see Chapters 3 and 4). Each of the
other lines can be assigned to one of the functional groups in the sample, as
indicated in the figure. The step function shown along with the spectrum is an

60 MHz
I
1 i 1 1 1
40 30 20 1.0  ppm
J AAJ{ 220 MHz
l i 1 1 1 1
70 65 0’ ’3.5 30 25 20 1.5 10 ppm

Fig. 1.4 Proton NMR spectrum of N-sec-butylaniline. Upper spectrum obtained
with a magnetic field of 14,000 gauss and a radio frequency of 60 MHz; lower spectrum,
52,000 gauss and 220 MHz (Ferguson and Phillips'®).

integral, with the height of each step proportional to the area under the
corresponding spectral line. There are several important features illustrated in
this spectrum: First, the chemical shift is clearly demonstrated, for the reson-
ance frequencies depend on the chemical environment, as we shall study in
detail in Chapter 4. Second, the areas under the lines are different and, as we
shall see when we examine the theory in Chapter 2, the area of each line is
proportional to the number of nuclei contributing to it. Third, the widths of
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the lines are different; in particular, the line due to the OH is considerably
broader than the others. We shall examine the reasons for different line widths
in Chapters 2, 9, and 10.

The spectrum in Figure 1.1 is particularly simple. A more typical spectrum
—that of a natural product, ferrugone—is given in Figure 1.2. This spectrum

5 5 ]
2,6-H 0 g
O/CHZ
4,8-H Irradiated
1, 5-H
i 1
50 40 30
3 (ppm)

Fig. 1.5 Part of the proton NMR spectrum of sesamin. Bottom, ordinary spectrum;
top, with additional radio-frequency irradiation in the vicinity of the complex multiplet at

the right of the spectrum.

consists of single lines well separated from each other, as were the lines in
Figure 1.1, and of simple multiplets. (The inset shows the multiplets on an
expanded abscissa scale.) The splitting of single lines into multiplets arises
from interactions between the nuclei called spin-spin coupling. This is an
important type of information obtainable from an NMR spectrum. In Chapter



